Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where László Losonczi is active.

Publication


Featured researches published by László Losonczi.


Proceedings of the American Mathematical Society | 1998

Minkowski's inequality for two variable difference means

László Losonczi; Zsolt Páles

We study Minkowski’s inequality Da b(x1 + x2, y1 + y2) ≤ Da b(x1, y1) +Da b(x2, y2) (x1, x2, y1, y2 ∈ R+) and its reverse where Da b is the difference mean introduced by Stolarsky. We give necessary and sufficient conditions (concerning the parameters a, b) for the inequality above (and for its reverse) to hold.


Results in Mathematics | 1996

On the stability of Hosszú’s functional equation

László Losonczi

Two stability results are proved. The first one states that Hosszú’s functional equation % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A!


Archive | 1987

On Some Discrete Quadratic Inequalities

László Losonczi


Aequationes Mathematicae | 1985

An extension theorem

László Losonczi

f(x+y-xy)+f(xy)=f(x)-f(y)=0\ \ \ \ \ (x,y \in \rm R)


Monatshefte für Mathematik | 1984

Inequalities of Young-type

László Losonczi


Archive | 1983

Hölder-Type Inequalities

László Losonczi

is stable. The second is a local stability theorem for additive functions in a Banach space setting.


Archive | 1987

The Behaviour of Comprehensive Classes of Means Under Equal Increments of Their Variables

János Aczél; László Losonczi; Zs. Páles

Inequalities of the form


Archive | 2002

Homogeneous Cauchy Mean Values

László Losonczi


Aequationes Mathematicae | 1997

A structure theorem for sum form functional equations

László Losonczi

\alpha \sum\limits_{{\text{j = 0}}}^{\text{n}} {{\text{|}}{{\text{X}}_{\text{j}}}{{\text{|}}^{\text{2}}} \leqslant \sum {{\text{|}}{{\text{X}}_{\text{j}}} \pm {{\text{X}}_{\text{j}}}{\text{ + k}}{{\text{|}}^{\text{2}}} \leqslant \beta \sum\limits_{{\text{j = 0}}}^{\text{n}} {{\text{|}}{{\text{X}}_{\text{j}}}{{\text{|}}^{\text{2}}}} } }


Aequationes Mathematicae | 1997

Paul Erdős on functional equations: Contributions and impact

László Losonczi

Collaboration


Dive into the László Losonczi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Plum

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyula Maksa

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge