Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laszlo Vutskits is active.

Publication


Featured researches published by Laszlo Vutskits.


Journal of Cell Biology | 2003

VEGF is a chemoattractant for FGF-2-stimulated neural progenitors

Huanxiang Zhang; Laszlo Vutskits; Michael S. Pepper; Jozsef Zoltan Kiss

Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system.


European Journal of Neuroscience | 2001

PSA‐NCAM modulates BDNF‐dependent survival and differentiation of cortical neurons

Laszlo Vutskits; Z. Djebbara-Hannas; Huanxiang Zhang; Jean-Pierre Paccaud; Pascale Durbec; Geneviève Rougon; Dominique Muller; Jozsef Zoltan Kiss

We show that the loss or inactivation of the polysialic acid (PSA) tail of neural cell adhesion molecule (NCAM) on rat cortical neurons in culture leads to reduced differentiation and survival. The mechanism by which this negative effect is mediated appears to involve the neuronal response to brain‐derived neurotrophic factor (BDNF): (i) in the absence of PSA or in the presence of excess free PSA added to the culture medium, BDNF‐induced cell signalling is reduced; (ii) the addition of exogenous BDNF to the medium reverses the effect of PSA loss or inactivation. These data suggest that PSA‐NCAM, previously shown to modulate cell migration and plasticity, is needed for an adequate sensitivity of neurons to BDNF.


Anesthesiology | 2010

Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis.

Adrian Briner; Mathias De Roo; Alexandre Dayer; Dominique Muller; Walid Habre; Laszlo Vutskits

Background:Recent experimental observations suggest that, in addition to induce neuroapoptosis, anesthetics can also interfere with synaptogenesis during brain development. The aim of this study was to pursue this issue by evaluating the exposure time-dependent effects of volatile anesthetics on neuronal cytoarchitecture in 16-day-old rats, a developmental stage characterized by intense synaptogenesis in the cerebral cortex. Methods:Whistar rats underwent isoflurane (1.5%), sevoflurane (2.5%), or desflurane (7%) anesthesia for 30, 60, and 120 min at postnatal day 16, and the effect of these treatments on neuronal cytoarchitecture was evaluated 6 h after the initiation of anesthesia. Cell death was assessed using Fluoro-Jade B staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay. Ionotophoretic injections into layer 5 pyramidal neurons in the medial prefrontal cortex allowed visualization of dendritic arbor. Tracing of dendritic tree was carried out using the Neurolucida station (Microbrightfield, Williston, VT), whereas dendritic spines were analyzed using confocal microscopy. Results:Up to a 2-h-long exposure, none of the volatile drugs induced neuronal cell death or significant changes in gross dendritic arbor pattern of layer 5 pyramidal neurons in pups at postnatal day 16. In contrast, these drugs significantly increased dendritic spine density on dendritic shafts of these cells. Importantly, considerable differences were found between these three volatile agents in terms of exposure time-dependent effects on dendritic spine density. Conclusion:These new results suggest that volatile anesthetics, with different potencies and without inducing cell death, could rapidly interfere with physiologic patterns of synaptogenesis and thus might impair appropriate circuit assembly in the developing cerebral cortex.


The Journal of Pain | 2003

Acute Differential Modulation of Synaptic Transmission and Cell Survival During Exposure to Pulsed and Continuous Radiofrequency Energy

Alex Cahana; Laszlo Vutskits; Dominique Muller

Pulsed radiofrequency, in which short bursts of radiofrequency energy are applied to nervous tissue, has been recently described as an alternative technique devoid of nerve injury, a subsequent side effect of thermal lesions created by continuous radiofrequency lesioning. Yet the mechanism of this effect remains unclear. In this study we compared the acute effects of pulsed versus continuous radiofrequency energy on impulse propagation and synaptic transmission in hippocampal slice cultures and on cell survival in cortical cultures. A differential effect was observed on both systems, with pulsed radiofrequency producing a transient and continuous radiofrequency a lasting inhibition of evoked synaptic activity. In addition, although both continuous radiofrequency and pulsed radiofrequency treatments induced a distance-dependent tissue destruction under the stimulating needle, the effect was more pronounced in the continuous radiofrequency group. These findings suggest that the acute effects of pulsed radiofrequency are more reversible and less destructive in nature than the classic continuous radiofrequency mode, even in normothermal conditions. This model might help elucidate the importance of various parameters for the clinical application of radiofrequency lesioning and might open new horizons for the role of pulsed radiofrequency lesioning in cases of neuropathic pain.


BJA: British Journal of Anaesthesia | 2013

Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar

Vesna Jevtovic-Todorovic; Anthony Absalom; Klas Blomgren; A. Brambrink; Greg Crosby; Deborah J. Culley; G. Fiskum; Rona G. Giffard; K. F. Herold; Andreas W. Loepke; Daqing Ma; Beverley A. Orser; Emmanuel Planel; W. Slikker; Sulpicio G. Soriano; G. Stratmann; Laszlo Vutskits; Zhongcong Xie; Hugh C. Hemmings

Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young subjects, and might also contribute to accelerated cognitive decline in the elderly. A group of experts in anaesthetic neuropharmacology and neurotoxicity convened in Salzburg, Austria for the BJA Salzburg Seminar on Anaesthetic Neurotoxicity and Neuroplasticity. This focused workshop was sponsored by the British Journal of Anaesthesia to review and critically assess currently available evidence from animal and human studies, and to consider the direction of future research. It was concluded that mounting evidence from preclinical studies reveals general anaesthetics to be powerful modulators of neuronal development and function, which could contribute to detrimental behavioural outcomes. However, definitive clinical data remain elusive. Since general anaesthesia often cannot be avoided regardless of patient age, it is important to understand the complex mechanisms and effects involved in anaesthesia-induced neurotoxicity, and to develop strategies for avoiding or limiting potential brain injury through evidence-based approaches.


Brain Research Reviews | 2001

The role of neural cell adhesion molecules in plasticity and repair

Jozsef Zoltan Kiss; E Troncoso; Z Djebbara; Laszlo Vutskits; D Muller

Repair and functional recovery after brain injury critically depends on structural and functional plasticity of preserved neuronal networks. A striking feature of brain structures where tissue reorganization and plasticity occur is a strong expression of the polysialylated neural cell adhesion molecule (PSA-NCAM). An important role of this molecule in various aspects of neuronal and synaptic plasticity has been revealed by many studies. Recently, a new mechanism has been elucidated whereby PSA-NCAM may contribute to signalling mediated by the neurotrophic factor BDNF, thereby sensitizing neurons to this growth factor. This mechanism was shown to be important for activity-induced synaptic plasticity and for the survival and differentiation of cortical neurons. A cross-talk between these molecules may, thus, reveal a key factor for properties of structural plasticity and in particular could mediate the activity-dependent aspects of synaptic network remodeling. Animal models have been developed to assess the role of these molecules in functional recovery after lesions.


Anesthesiology | 2011

Developmental Stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex

Adrian Briner; Irina Nikonenko; Mathias De Roo; Alexandre Dayer; Dominique Muller; Laszlo Vutskits

Background:Recent observations demonstrate that anesthetics rapidly impair synaptogenesis during neuronal circuitry development. Whether these effects are lasting and depend on the developmental stage at which these drugs are administered remains, however, to be explored. Methods:Wistar rats received propofol anesthesia at defined developmental stages during early postnatal life. The acute and long-term effects of these treatments on neuronal cytoarchitecture were evaluated by Neurolucida and confocal microscopy analysis after iontophoretic injections of Lucifer Yellow into layer 5 pyramidal neurons in the medial prefrontal cortex. Quantitative electron microscopy was applied to investigate synapse density. Results:Layer 5 pyramidal neurons of the medial prefrontal cortex displayed intense dendritic growth and spinogenesis during the first postnatal month. Exposure of rat pups to propofol at postnatal days 5 and 10 significantly decreased dendritic spine density, whereas this drug induced a significant increase in spine density when administered at postnatal days 15, 20, or 30. Quantitative electron microscopy revealed that the propofol-induced increase in spine density was accompanied by a significant increase in the number of synapses. Importantly, the propofol-induced modifications in dendritic spine densities persisted up to postnatal day 90. Conclusion:These new results demonstrate that propofol anesthesia can rapidly induce significant changes in dendritic spine density and that these effects are developmental stage-dependent, persist into adulthood, and are accompanied by alterations in synapse number. These data suggest that anesthesia in the early postnatal period might permanently impair circuit assembly in the developing brain.


PLOS ONE | 2009

Anesthetics rapidly promote synaptogenesis during a critical period of brain development

Mathias De Roo; Paul Klauser; Adrian Briner; Irina Nikonenko; Pablo Mendez; Alexandre Dayer; Jozsef Zoltan Kiss; Dominique Muller; Laszlo Vutskits

Experience-driven activity plays an essential role in the development of brain circuitry during critical periods of early postnatal life, a process that depends upon a dynamic balance between excitatory and inhibitory signals. Since general anesthetics are powerful pharmacological modulators of neuronal activity, an important question is whether and how these drugs can affect the development of synaptic networks. To address this issue, we examined here the impact of anesthetics on synapse growth and dynamics. We show that exposure of young rodents to anesthetics that either enhance GABAergic inhibition or block NMDA receptors rapidly induce a significant increase in dendritic spine density in the somatosensory cortex and hippocampus. This effect is developmentally regulated; it is transient but lasts for several days and is also reproduced by selective antagonists of excitatory receptors. Analyses of spine dynamics in hippocampal slice cultures reveals that this effect is mediated through an increased rate of protrusions formation, a better stabilization of newly formed spines, and leads to the formation of functional synapses. Altogether, these findings point to anesthesia as an important modulator of spine dynamics in the developing brain and suggest the existence of a homeostatic process regulating spine formation as a function of neural activity. Importantly, they also raise concern about the potential impact of these drugs on human practice, when applied during critical periods of development in infants.


Anesthesiology | 2005

Clinically Relevant Concentrations of Propofol but Not Midazolam Alter In Vitro Dendritic Development of Isolated γ-Aminobutyric Acid-positive Interneurons

Laszlo Vutskits; Eduardo Gascon; E. Tassonyi; Jozsef Zoltan Kiss

Background: Recent laboratory studies showed that exposure to supraclinical concentrations of propofol can induce cell death of immature neurons. However, no data are available regarding the effects of clinically relevant concentrations of this agent on neuronal development. The authors addressed this issue by evaluating the effect of propofol on dendritic growth and arbor expansion of developing &ggr;-aminobutyric acid–positive (GABAergic) interneurons. Methods: Immature neuroblasts were isolated from the newborn rat subventricular zone and differentiated into GABAergic interneurons in culture. In addition to cell death, the effects of increasing concentrations and durations of propofol exposure on neuronal dendritic development were evaluated using the following morphologic parameters: total dendritic length, primary dendrites, branching point, and Scholl analysis. Results: The authors demonstrate that propofol induced cell death of GABAergic neurons at concentrations of 50 &mgr;g/ml or greater. As little as 1 &mgr;g/ml propofol significantly altered several aspects of dendritic development, and as little as 4 h of exposure to this agent resulted in a persistent decrease in dendritic growth. In contrast, application of midazolam did not affect neuronal development. Conclusion: Short-term exposure of immature developing GABAergic neurons to clinically relevant concentrations of propofol can induce long-term changes in dendritic arbor development. These results suggest that propofol anesthesia during central nervous system development could interfere with the molecular mechanisms driving the differentiation of GABAergic neurons and thus could potentially lead to impairment of neural networks.


Pediatric Research | 2010

Use of analgesic and sedative drugs in the NICU: integrating clinical trials and laboratory data.

Xavier Durrmeyer; Laszlo Vutskits; K.J.S. Anand; Peter C. Rimensberger

Recent advances in neonatal intensive care include and are partly attributable to growing attention for comfort and pain control in the term and preterm infant requiring intensive care. Limitation of painful procedures is certainly possible, but most critically ill infants require unavoidable painful or stressful procedures such as intubation, mechanical ventilation, or catheterization. Many analgesics (opioids and nonsteroidal anti-inflammatory drugs) and sedatives (benzodiazepines and other anesthetic agents) are available but their use varies considerably among units. This review summarizes current experimental knowledge on the effects of sedative and analgesic drugs on brain development and reviews clinical evidence that speaks for or against the use of common analgesic and sedative drugs in the NICU but avoids any discussion of anesthesia during surgery. Risk/benefit ratios of intermittent boluses or continuous infusions for the commonly used sedative and analgesic agents are discussed in the light of clinical and experimental studies. The limitations of extrapolating experimental results from animals to humans must be considered while making practical recommendations based on the currently available evidence.

Collaboration


Dive into the Laszlo Vutskits's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas W. Loepke

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Davidson

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge