Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Latisha Love-Gregory is active.

Publication


Featured researches published by Latisha Love-Gregory.


Nature Immunology | 2014

Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages

Stanley Ching-Cheng Huang; Bart Everts; Yulia Ivanova; David O'Sullivan; Marcia Nascimento; Amber M. Smith; Wandy L. Beatty; Latisha Love-Gregory; Wing Y. Lam; Christina M. O'Neill; Cong Yan; Hong Du; Nada A. Abumrad; Joseph F. Urban; Maxim N. Artyomov; Erika L. Pearce; Edward J. Pearce

Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.


Journal of Lipid Research | 2012

The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects

Marta Yanina Pepino; Latisha Love-Gregory; Samuel Klein; Nada A. Abumrad

The precise orosensory inputs engaged for dietary lipids detection in humans are unknown. We evaluated whether a common single nucleotide polymorphism (rs1761667) in the CD36 gene that reduces CD36 expression and the addition of orlistat, a lipase inhibitor, to reduce FA release from triacylglycerols (TGs), the main component of dietary fats, would attenuate fat orosensory sensitivity in humans. Twenty-one obese subjects with different rs1761667 genotypes (6 AA, 7 AG, and 8 GG) were studied on two occasions in which oleic acid and triolein orosensory detection thresholds were measured using emulsions prepared with and without orlistat. Subjects homozygous for the G-allele had 8-fold lower oral detection thresholds for oleic acid and triolein than subjects homozygous for the A allele, which associates with lower CD36 expression (P = 0.03). Thresholds for heterozygous subjects were intermediate. The addition of orlistat increased detection thresholds for triolein (log threshold = −0.3 ± 0.2 vs. 0.3 ± 0.1; P < 0.001) but not oleic acid (log threshold = −1.0 ± 0.2 vs. −0.8 ± 0.2; P > 0.2). In conclusion, this is the first experimental evidence for a role of CD36 in fat gustatory perception in humans. The data also support involvement of lingual lipase and are consistent with the concept that FA and not TG is the sensed stimulus.


Human Molecular Genetics | 2008

Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol

Latisha Love-Gregory; Richard Sherva; Lingwei Sun; Jon Wasson; Timothy Schappe; Alessandro Doria; D. C. Rao; Steven C. Hunt; Samuel Klein; Rosalind J. Neuman; M. Alan Permutt; Nada A. Abumrad

A region along chromosome 7q was recently linked to components of the metabolic syndrome (MetS) in several genome-wide linkage studies. Within this region, the CD36 gene, which encodes a membrane receptor for long-chain fatty acids and lipoproteins, is a potentially important candidate. CD36 has been documented to play an important role in fatty acid metabolism in vivo and subsequently may be involved in the etiology of the MetS. The protein also impacts survival to malaria and the influence of natural selection has resulted in high CD36 genetic variability in populations of African descent. We evaluated 36 tag SNPs across CD36 in the HyperGen population sample of 2020 African-Americans for impact on the MetS and its quantitative traits. Five SNPs associated with increased odds for the MetS [P = 0.0027-0.03, odds ratio (OR) = 1.3-1.4]. Coding SNP, rs3211938, previously shown to influence malaria susceptibility, is documented to result in CD36 deficiency in a homozygous subject. This SNP conferred protection against the MetS (P = 0.0012, OR = 0.61, 95%CI: 0.46-0.82), increased high-density lipoprotein cholesterol, HDL-C (P = 0.00018) and decreased triglycerides (P = 0.0059). Fifteen additional SNPs associated with HDL-C (P = 0.0028-0.044). We conclude that CD36 variants may impact MetS pathophysiology and HDL metabolism, both predictors of the risk of heart disease and type 2 diabetes.


Human Molecular Genetics | 2011

Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile

Latisha Love-Gregory; Richard Sherva; Timothy Schappe; Jian-Shen Qi; Jennifer McCrea; Samuel Klein; Margery A. Connelly; Nada A. Abumrad

Membrane CD36 functions in the uptake of fatty acids (FAs), oxidized lipoproteins and in signal transduction after binding these ligands. In rodents, CD36 is implicated in abnormal lipid metabolism, inflammation and atherosclerosis. In humans, CD36 variants have been identified to influence free FA and high-density lipoprotein (HDL) levels and to associate with the risk of the metabolic syndrome, coronary artery disease and stroke. In this study, 15 common lipid-associated CD36 single nucleotide polymorphisms (SNPs) were evaluated for the impact on monocyte CD36 expression (protein and transcript) in 104 African Americans. In a subset of subjects, the SNPs were tested for association with monocyte surface CD36 (n=65) and platelet total CD36 (n=57). The relationship between CD36 expression and serum HDL and very low-density lipoproteins (VLDLs) levels was also examined. After a permutation-based correction for multiple tests, four SNPs (rs1761667, rs3211909, rs3211913, rs3211938) influenced monocyte CD36 protein and two (rs3211909, rs3211938) platelet CD36. The effect of the HDL-associated SNPs on CD36 expression inversely related to the impact on serum HDL and potential causality was supported by Mendelian randomization analysis. Consistent with this, monocyte CD36 protein negatively correlated with total HDL and HDL subfractions. In contrast, positive correlations were documented between monocyte CD36 and VLDL lipid, particle number and apolipoprotein B. In conclusion, CD36 variants that reduce protein expression appear to promote a protective metabolic profile. The SNPs in this study may have predictive potential on CD36 expression and disease susceptibility in African Americans. Further studies are warranted to validate and determine whether these findings are population specific.


Diabetologia | 2003

An E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of Type II diabetes in Caucasians as the PPARγ Pro12Ala variant

Latisha Love-Gregory; Jonathon Wasson; Lin J; Gary B. Skolnick; Brian K. Suarez; M. A. Permutt

2. Wren A, Seal L, Cohen M et al. (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992–5995 3. Tschop M, Weyer C, Tataranni P, Devanarayan V, Ravussin E, Heiman M (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50: 707–709 4. Ariyasu H, Takaya K, Tagami T et al. (2001) Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 86: 4753–4758 5. Hosoda H, Kojima M, Matsuo H, Kangawa K (2000) Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279: 909–913 6. Shiiya T, Nakazato M, Mizuta M et al. (2002) Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 87: 240–244 7. Saad M, Bernaba B, Hwu C et al. (2002) Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 87: 3997–4000 8. Caixas A, Bashore C, Nash W, Pi-Sunyer F, Laferrere B (2002) Insulin, unlike food intake, does not suppress ghrelin in human subjects. J Clin Endocrinol Metab 87: 1902–1906


Current Opinion in Clinical Nutrition and Metabolic Care | 2011

CD36 genetics and the metabolic complications of obesity

Latisha Love-Gregory; Nada A. Abumrad

Purpose of reviewThe review summarizes our current understanding of the function of the fatty acid translocase, CD36, in lipid metabolism with an emphasis on the influence of CD36 genetic variants and their potential contribution to obesity-related complications. Recent findingsStudies in rodents implicate CD36 in a number of metabolic pathways with relevance to obesity and its associated complications. These include pathways related to fat utilization such as taste perception, intake, intestinal processing, and storage in adipose tissue. Dysfunction in these pathways, coupled with the ability of CD36 to transduce intracellular signals that initiate inflammation in response to excess fat supply, promotes metabolic pathology. In the last few years, the relevance of discoveries in rodents to humans has been highlighted by genetic studies, which identified common CD36 variants that influence circulating lipid levels and cardiometabolic phenotypes. SummaryRecent genetic studies suggest that CD36 plays an important role in lipid metabolism in humans and may be involved in obesity-related complications. These findings may accelerate the translation of CD36 metabolic functions determined in rodents to humans. Importantly, these studies highlight the potential utility of assessing CD36 expression and common single-nucleotide polymorphism genotypes.


Current Opinion in Clinical Nutrition and Metabolic Care | 2007

HNF4A genetic variants: role in diabetes.

Latisha Love-Gregory; M. Alan Permutt

Purpose of reviewVariants in the hepatocyte nuclear factor 4α (HNF4A) gene play a role in the development of diabetes mellitus. Although genetic variation in and around HNF4A regulatory regions has received considerable attention, the significance of these variants in the common type 2 diabetes varies in the literature. This review will provide a general overview of recent genetic studies involving the evaluation of HNF4A as a contributor to the risk and pathophysiology of diabetes mellitus and related risk factors. Recent findingsThese studies report newly identified variants, evaluate previously reported polymorphisms that were associated with type 2 diabetes in several distinct populations with maturity-onset diabetes of the young, type 2 diabetes, gestational diabetes, and diabetes related risk factors, and propose a role for HNF4A in insulin secretion via the potassium ATP channel. SummaryHNF4A variants identified so far appear to modestly contribute to predisposition for type 2 diabetes. Continued identification and especially functional characterization of variants, however, will be critical in future studies to enhance our understanding of the metabolic impact of this gene.


Synapse | 2016

Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status

Sarah A. Eisenstein; Ryan Bogdan; Latisha Love-Gregory; Nadia S. Corral-Frías; Jonathan M. Koller; Kevin J. Black; Stephen M. Moerlein; Joel S. Perlmutter; M Deanna; Tamara Hershey

In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are nonselective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N‐[11C]methyl)benperidol ([11C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in two independent samples. Sample 1 (n = 39) was composed of obese and nonobese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5 to 12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1−), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10–14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1− was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R‐selective [11C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states.


Gastroenterology | 2016

Physiological Mechanisms of Weight Gain−Induced Steatosis in People With Obesity

Elisa Fabbrini; Courtney Tiemann Luecking; Latisha Love-Gregory; Adewole L. Okunade; Mihoko Yoshino; Gemma Fraterrigo; Bruce W. Patterson; Samuel Klein

Weight gain is associated with an increase in intrahepatic triglycerides (IHTGs), and is the primary cause of nonalcoholic fatty liver disease in obese individuals. We combined imaging and stable isotope tracer techniques to evaluate the physiologic mechanisms of weight gain-induced steatosis in 27 obese people. Weight gain appeared to increase IHTG content by generating an imbalance between hepatic fatty acid availability and disposal, and resulted in increased hepatic de novo lipogenesis, decreased intrahepatic fatty acid oxidation, and inadequate increases in IHTG export via very low-density lipoprotein secretion. ClinicalTrials.gov ID NCT01184170.


Diabetes Care | 2014

Adipose and Muscle Tissue Profile of CD36 Transcripts in Obese Subjects Highlights the Role of CD36 in Fatty Acid Homeostasis and Insulin Resistance

Terri Pietka; Timothy Schappe; Caterina Conte; Elisa Fabbrini; Bruce W. Patterson; Samuel Klein; Nada A. Abumrad; Latisha Love-Gregory

OBJECTIVE Fatty acid (FA) metabolism is tightly regulated across several tissues and impacts insulin sensitivity. CD36 facilitates cellular FA uptake, and CD36 genetic variants associate with lipid abnormalities and susceptibility to metabolic syndrome. The objective of this study was to gain insight regarding the in vivo metabolic influence of muscle and adipose tissue CD36. For this, we determined the relationships between CD36 alternative transcripts, which can reflect tissue-specific CD36 regulation, and measures of FA metabolism and insulin resistance. RESEARCH DESIGN AND METHODS The relative abundance of alternative CD36 transcripts in adipose tissue and skeletal muscle from 53 nondiabetic obese subjects was measured and related to insulin sensitivity and FA metabolism assessed by hyperinsulinemic–euglycemic clamps and isotopic tracers for glucose and FA. RESULTS Transcript 1C, one of two major transcripts in adipose tissue, that is restricted to adipocytes predicted systemic and tissue (adipose, liver, and muscle) insulin sensitivity, suggesting adipocyte CD36 protects against insulin resistance. Transcripts 1B and 1A, the major transcripts in skeletal muscle, correlated with FA disposal rate and triglyceride clearance, supporting importance of muscle CD36 in clearance of circulating FA. Additionally, the common CD36 single nucleotide polymorphism rs1761667 selectively influenced CD36 transcripts and exacerbated insulin resistance of glucose disposal by muscle. CONCLUSIONS Alternative CD36 transcripts differentially influence tissue CD36 and consequently FA homeostasis and insulin sensitivity. Adipocyte CD36 appears to be metabolically protective, and its selective upregulation might have therapeutic potential in insulin resistance.

Collaboration


Dive into the Latisha Love-Gregory's collaboration.

Top Co-Authors

Avatar

Nada A. Abumrad

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

M. Alan Permutt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Samuel Klein

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gary B. Skolnick

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brian K. Suarez

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jon Wasson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy Schappe

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Amber M. Smith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ann M. Gronowski

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bruce W. Patterson

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge