Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Latrisha K. Petersen is active.

Publication


Featured researches published by Latrisha K. Petersen.


Biomaterials | 2011

Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants

Latrisha K. Petersen; Amanda E. Ramer-Tait; Scott R. Broderick; Chang Sun Kong; Bret Daniel Ulery; Krishna Rajan; Michael J. Wannemuehler; Balaji Narasimhan

Techniques in materials design, immunophenotyping, and informatics can be valuable tools for using a molecular based approach to design vaccine adjuvants capable of inducing protective immunity that mimics a natural infection but without the toxic side effects. This work describes the molecular design of amphiphilic polyanhydride nanoparticles that activate antigen presenting cells in a pathogen-mimicking manner. Biodegradable polyanhydrides are well suited as vaccine delivery vehicles due to their adjuvant-like ability to: 1) enhance the immune response, 2) preserve protein structure, and 3) control protein release. The results of these studies indicate that amphiphilic nanoparticles possess pathogen-mimicking properties as evidenced by their ability to activate dendritic cells similarly to LPS. Specific molecular descriptors responsible for this behavior were identified using informatics analyses, including the number of backbone oxygen moieties, percent of hydroxyl end groups, polymer hydrophobicity, and number of alkyl ethers. Additional findings from this work suggest that the molecular characteristics mediating APC activation are not limited to hydrophobicity but vary in complexity (e.g., presentation of oxygen-rich molecular patterns to cells) and elicit unique patterns of cellular activation. The approach outlined herein demonstrates the ability to rationally design pathogen-mimicking nanoparticle adjuvants for use in next-generation vaccines against emerging and re-emerging diseases.


Biomaterials | 2009

The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells

Latrisha K. Petersen; Li C. Xue; Michael J. Wannemuehler; Krishna Rajan; Balaji Narasimhan

Polyanhydrides are a promising class of biomaterials for use as vaccine adjuvants and as multi-component implants. Their properties can be tailored for such applications as controlled drug release, drug stability, and/or immune regulation (adjuvant effect). Understanding the induction of immunomodulatory mechanisms of this polymer system is important for the design and development of efficacious vaccines and tissue compatible multi-component implantable devices using this polymer system. This study describes the development of a rapid multiplexed method for the investigation of the adjuvanticity of polyanhydride nanospheres and films using murine dendritic cells (DCs). To assess the immune response, cell surface markers including MHC II, CD86, CD40, and CD209 and cytokines including IL-6, IL-12p40, and IL-10 were measured. The DCs incubated with nanospheres displayed enhanced expression of all the surface markers and the production of IL-12p40 compared to DCs incubated with polymer films in a chemistry-dependent manner. This suggests that polyanhydrides of various chemistries and device geometries can be tailored to achieve desired levels of immune cell activation for specific applications. The observed biocompatibility and activation of DCs by polyanhydride devices supports their inclusion in vaccine delivery devices as well as in multi-component medical implants.


Acta Biomaterialia | 2010

High-throughput analysis of protein stability in polyanhydride nanoparticles.

Latrisha K. Petersen; C.K. Sackett; Balaji Narasimhan

Polyanhydrides are a class of surface eroding biomaterials with applications in vaccine and drug delivery. With the complexity and fragile nature of many protein molecules used in therapeutic treatments and vaccines, devices capable of protecting and preserving the functionality of these proteins are essential. In addition, the half-lives of many vaccine antigens and therapeutic proteins are often short, especially at elevated temperatures. In this work a high-throughput methodology has been developed to rapidly assess the effects of polymer chemistry and the various steps during protein delivery (i.e. encapsulation, storage and release) from polyanhydride nanoparticles on the stability of a model protein, bovine serum albumin. Additional factors including microenvironment pH were also investigated in this multi-parametric approach to evaluate protein stabilization. The findings indicate that the microenvironment pH caused by the acidic polymer degradation products was the most detrimental factor affecting protein stability. Nanoparticles based on 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane and 1,6-bis(p-carboxyphenoxy)hexane maintained protein antigenicity over a range of temperatures for 1month. These nanoparticles were also successful in preserving protein structure and emerged as viable candidates for use in future drug/protein delivery applications. The combinatorial approach developed in this work allowed for a 25-fold decrease in time and a 10-fold decrease in the amount of materials needed for the investigation of protein stability when compared to conventional methods.


Molecular Pharmaceutics | 2012

Amphiphilic Polyanhydride Nanoparticles Stabilize Bacillus anthracis Protective Antigen

Latrisha K. Petersen; Yashdeep Phanse; Amanda E. Ramer-Tait; Michael J. Wannemuehler; Balaji Narasimhan

Advancements toward an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose against a pathogenic challenge, can stabilize and release functional PA. These nanoparticles demonstrated polymer hydrophobicity-dependent preservation of the biological function of PA upon encapsulation, storage (over extended times and elevated temperatures), and release. Specifically, fabrication of amphiphilic polyanhydride nanoparticles composed of 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane best preserved PA functionality. These studies demonstrate the versatility and superiority of amphiphilic nanoparticles as vaccine delivery vehicles suitable for long-term storage.


Scientific Reports | 2011

Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

Bret Daniel Ulery; Latrisha K. Petersen; Yashdeep Phanse; Chang Sun Kong; Scott R. Broderick; Devender Kumar; Amanda E. Ramer-Tait; Brenda R. Carrillo-Conde; Krishna Rajan; Michael J. Wannemuehler; Bryan H. Bellaire; Dennis W. Metzger; Balaji Narasimhan

An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens.


Advanced Healthcare Materials | 2013

Evaluation of biocompatibility and administration site reactogenicity of polyanhydride-particle-based platform for vaccine delivery.

Lucas Huntimer; Amanda E. Ramer-Tait; Latrisha K. Petersen; Kathleen A. Ross; Katherine A. Walz; Chong Wang; Jesse M. Hostetter; Balaji Narasimhan; Michael J. Wannemuehler

Efficacy, purity, safety, and potency are important attributes of vaccines. Polyanhydride particles represent a novel class of vaccine adjuvants and delivery platforms that have demonstrated the ability to enhance the stability of protein antigens as well as elicit protective immunity against bacterial pathogens. This work aims to elucidate the biocompatibility, inflammatory reactions, and particle effects on mice injected with a 5 mg dose of polyanhydride nanoparticles via common parenteral routes (subcutaneous and intramuscular). Independent of polymer chemistry, nanoparticles more effectively disseminated away from the injection site as compared to microparticles, which exhibited a depot effect. Using fluorescent probes, the in vivo distribution of three formulations of nanoparticles, following subcutaneous administration, indicated migration away from the injection site. Less inflammation was observed at the injection sites of mice-administered nanoparticles as compared to Alum and incomplete Freunds adjuvant. Furthermore, histological evaluation revealed minimal adverse injection site reactions and minimal toxicological effects associated with the administration of nanoparticles at 30 days post-administration. Collectively, these results demonstrate that polyanhydride nanoparticles do not induce inflammation as a cumulative effect of particle persistence or degradation and are, therefore, a viable candidate for a vaccine delivery platform.


Combinatorial Chemistry & High Throughput Screening | 2009

High Throughput Cell-Based Screening of Biodegradable Polyanhydride Libraries

Andrew F. Adler; Latrisha K. Petersen; Jennifer H. Wilson; Maria P. Torres; Jon B. Thorstenson; Stuart W. Gardner; Surya K. Mallapragada; Michael J. Wannemuehler; Balaji Narasimhan

A parallel screening method has been developed to rapidly evaluate discrete library substrates of biomaterials using cell-based assays. The biomaterials used in these studies were surface-erodible polyanhydrides based on sebacic acid (SA), 1,6-bis(p-carboxyphenoxy)hexane (CPH), and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) that have been previously studied as carriers for drugs, proteins, and vaccines. Linearly varying compositional libraries of 25 different polyanhydride random copolymers (based on CPH:SA and CPTEG:CPH) were designed, fabricated, and synthesized using discrete (organic solvent-resistant) multi-sample substrates created using a novel rapid prototyping method. The combinatorial libraries were characterized at high throughput using infrared microscopy and validated using 1H NMR and size exclusion chromatography. The discrete libraries were rapidly screened for biocompatibility using standard SP2/0 myeloma, CHO and L929 fibroblasts, and J774 macrophage cell lines. At a concentration of 2.8 mg/mL, there was no appreciable cytotoxic effect on any of the four cell lines evaluated by any of the CPH:SA or CPTEG:CPH compositions. Furthermore, the activation of J774 macrophages was evaluated by incubating the cells with the polyanhydride libraries and quantifying the secreted cytokines (IL-6, IL-10, IL-12, and TNFalpha). The results indicated that copolymer compositions containing at least 50% CPH induced elevated amounts of TNFalpha. In summary, the results indicated that the methodologies described herein are amenable to the high throughput analysis of synthesized biomaterials and will facilitate the rapid and rational design of materials for use in biomedical applications.


Acta Biomaterialia | 2013

Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles.

Shannon L. Haughney; Latrisha K. Petersen; Amy Danielle Schoofs; Amanda E. Ramer-Tait; Janice D. King; David E. Briles; Michael J. Wannemuehler; Balaji Narasimhan

Pneumococcal surface protein A (PspA) is a choline-binding protein which is a virulence factor found on the surface of all Streptococcus pneumoniae strains. Vaccination with PspA has been shown to be protective against a lethal challenge with S. pneumoniae, making it a promising immunogen for use in vaccines. Herein the design of a PspA-based subunit vaccine using polyanhydride nanoparticles as a delivery platform is described. Nanoparticles based on sebacic acid (SA), 1,6-bis-(p-carboxyphenoxy)hexane (CPH) and 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), specifically 50:50 CPTEG:CPH and 20:80 CPH:SA, were used to encapsulate and release PspA. The protein released from the nanoparticle formulations retained its primary and secondary structure as well as its antigenicity. The released PspA was also biologically functional based on its ability to bind to apolactoferrin and prevent its bactericidal activity against Escherichia coli. When the PspA nanoparticle formulations were administered subcutaneously to mice they elicited a high titer and high avidity anti-PspA antibody response. Together these studies provide a framework for the rational design of a vaccine against S. pneumoniae based on polyanhydride nanoparticles.


ACS Combinatorial Science | 2011

Identifying Factors Controlling Protein Release from Combinatorial Biomaterial Libraries via Hybrid Data Mining Methods

Xue Li; Latrisha K. Petersen; Scott R. Broderick; Balaji Narasimhan; Krishna Rajan

Polyanhydrides are a class of degradable biomaterials that have shown much promise for applications in drug and vaccine delivery. Their properties can be tailored for controlled drug release, drug/protein stability, and immune regulation (adjuvant effect). Identifying the relationship between the molecular structures of the polymers and the drug release kinetics profiles would help understand the release mechanism and aid in the accurate prediction of drug release and the rational design of polymer-based drug carrier systems. The molecular structure descriptors that had the most impact on the release kinetics were identified using a prediction/optimization data mining approach. Using this new approach for modeling nonlinear release kinetics behavior, we determined that the descriptors which had the greatest effect on the release kinetics were the number of backbone -COO- nonconjugated bonds, the number of aromatic rings, and the number of -CH₂- bonds.


Advanced Healthcare Materials | 2014

Lung Deposition and Cellular Uptake Behavior of Pathogen‐Mimicking Nanovaccines in the First 48 Hours

Kathleen A. Ross; Shannon L. Haughney; Latrisha K. Petersen; Paola M. Boggiatto; Michael J. Wannemuehler; Balaji Narasimhan

Pulmonary immunization poses the unique challenge of balancing vaccine efficacy with minimizing inflammation in the respiratory tract. While previous studies have shown that mice immunized intranasally with F1-V-loaded polyanhydride nanoparticles are protected from a lethal challenge with Yersinia pestis, little is known about the initial interaction between the nanoparticles and immune cells following intranasal administration. Here, the deposition within the lung and internalization by phagocytic cells of polyanhydride nanovaccines encapsulating F1-V are compared with that of soluble F1-V alone or F1-V adjuvanted with monophosphoryl lipid A (MPLA). Encapsulation of F1-V into polyanhydride nanoparticles prolonged its presence while F1-V administered with MPLA is undetectable within 48 h. The inflammation induced by the polyanhydride nanovaccine is mild compared with the marked inflammation induced by the MPLA-adjuvanted F1-V. Even though F1-V delivered with saline is detected in the lung 48 h after administration, it is known that this regimen does not elicit a protective immune response. The prolonged F1-V presence in the lung in concert with the mild inflammatory response provided by the nanovaccine provides new insights into the development of protective immune responses with a single intranasal dose.

Collaboration


Dive into the Latrisha K. Petersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishna Rajan

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott R. Broderick

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge