Lau Blonden
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lau Blonden.
Cell | 1991
Annemiske J.M.H. Verkerk; Maura Pieretti; James S. Sutcliffe; Ying-Hui Fu; Derek P.A. Kuhl; Antonio Pizzuti; Orly Reiner; Stephen Richards; Maureen F. Victoria; Fuping Zhang; Bert Eussen; Gert-Jan B. van Ommen; Lau Blonden; Gregory J. Riggins; Jane L. Chastain; Catherine B. Kunst; H. Galjaard; C. Thomas Caskey; David L. Nelson; Ben A. Oostra; Stephen T. Warren
Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.
Gut | 2011
Wendy van Veelen; Ngoc Hang Le; Werner Helvensteijn; Lau Blonden; Myrte Theeuwes; Elvira Bakker; Patrick Franken; Léon van Gurp; Frits Meijlink; Martin van der Valk; Ernst J. Kuipers; Riccardo Fodde; Ron Smits
Objective Deregulation of the Wnt signalling pathway by mutations in the Apc or β-catenin genes underlies colorectal carcinogenesis. As a result, β-catenin stabilises, translocates to the nucleus, and activates gene transcription. Intestinal tumours show a heterogeneous pattern of nuclear β-catenin, with the highest levels observed at the invasion front. Activation of receptor tyrosine kinases in these tumour areas by growth factors expressed by surrounding stromal cells phosphorylate β-catenin at tyrosine residues, which is thought to increase β-catenin nuclear translocation and tumour invasiveness. This study investigates the relevance of β-catenin tyrosine phosphorylation for Wnt signalling and intestinal tumorigenesis in vivo. Design A conditional knock-in mouse model was generated into which the phospho-mimicking Y654E modification in the endogenous β-catenin gene was introduced. Results This study provided in vivo evidence that β-cateninE654 is characterised by reduced affinity for cadherins, increased signalling and strongly increased phosphorylation at serine 675 by protein kinase A (PKA). In addition, homozygosity for the β-cateninE654 targeted allele caused embryonic lethality, whereas heterozygosity predisposed to intestinal tumour development, and strongly enhanced Apc-driven intestinal tumour initiation associated with increased nuclear accumulation of βcatenin. Surprisingly, the expression of β-cateninE654 did not affect histological grade or induce tumour invasiveness. Conclusions A thus far unknown mechanism was uncovered in which Y654 phosphorylation of β-catenin facilitates additional phosphorylation at serine 675 by PKA. In addition, in contrast to the current belief that β-catenin Y654 phosphorylation increases tumour progression to a more invasive phenotype, these results show that it rather increases tumour initiation by enhancing Wnt signalling.
Development Genes and Evolution | 2005
Sandra van't Padje; Bart Engels; Lau Blonden; Lies-Anne Severijnen; Frans W. Verheijen; Ben A. Oostra; Rob Willemsen
Fragile X syndrome is the most common inherited form of mental retardation. It is caused by the lack of the Fragile X Mental Retardation Protein (FMRP), which is encoded by the FMR1 gene. Although Fmr1 knockout mice display some characteristics also found in fragile X patients, it is a complex animal model to study brain abnormalities, especially during early embryonic development. Interestingly, the ortholog of the FMR1 gene has been identified not only in mouse, but also in zebrafish (Danio rerio). In this study, an amino acid sequence comparison of FMRP orthologs was performed to determine the similar regions of FMRP between several species, including human, mouse, frog, fruitfly and zebrafish. Further characterisation of Fmrp has been performed in both adults and embryos of zebrafish using immunohistochemistry and western blotting with specific antibodies raised against zebrafish Fmrp. We have demonstrated a strong Fmrp expression in neurons of the brain and only a very weak expression in the testis. In brain tissue, a different distribution of the isoforms of Fmrp, compared to human and mouse brain tissue, was shown using western blot analysis. Due to the high similarity between zebrafish Fmrp and human FMRP and their similar expression pattern, the zebrafish has great potential as a complementary animal model to study the pathogenesis of the fragile X syndrome, especially during embryonic development.
Circulation Research | 2011
Caroline Cheng; Dennie Tempel; Wijnand den Dekker; Remco Haasdijk; Ihsan Chrifi; Frank L. Bos; Kim Wagtmans; Esther van de Kamp; Lau Blonden; Erik A.L. Biessen; Frans L. Moll; Gerard Pasterkamp; Patrick W. Serruys; Stefan Schulte-Merker; Henricus J. Duckers
Rationale: Neovascularization is required for embryonic development and plays a central role in diseases in adults. In atherosclerosis, the role of neovascularization remains to be elucidated. In a genome-wide microarray-screen of Flk1+ angioblasts during murine embryogenesis, the v-ets erythroblastosis virus E26 oncogene homolog 2 (Ets2) transcription factor was identified as a potential angiogenic factor. Objectives: We assessed the role of Ets2 in endothelial cells during atherosclerotic lesion progression toward plaque instability. Methods and Results: In 91 patients treated for carotid artery disease, Ets2 levels showed modest correlations with capillary growth, thrombogenicity, and rising levels of tumor necrosis factor-&agr; (TNF&agr;), monocyte chemoattractant protein 1, and interleukin-6 in the atherosclerotic lesions. Experiments in ApoE−/− mice, using a vulnerable plaque model, showed that Ets2 expression was increased under atherogenic conditions and was augmented specifically in the vulnerable versus stable lesions. In endothelial cell cultures, Ets2 expression and activation was responsive to the atherogenic cytokine TNF&agr;. In the murine vulnerable plaque model, overexpression of Ets2 promoted lesion growth with neovessel formation, hemorrhaging, and plaque destabilization. In contrast, Ets2 silencing, using a lentiviral shRNA construct, promoted lesion stabilization. In vitro studies showed that Ets2 was crucial for TNF&agr;-induced expression of monocyte chemoattractant protein 1, interleukin-6, and vascular cell adhesion molecule 1 in endothelial cells. In addition, Ets2 promoted tube formation and amplified TNF&agr;-induced loss of vascular endothelial integrity. Evaluation in a murine retina model further validated the role of Ets2 in regulating vessel inflammation and endothelial leakage. Conclusions: We provide the first evidence for the plaque-destabilizing role of Ets2 in atherosclerosis development by induction of an intraplaque proinflammatory phenotype in endothelial cells.
The Journal of Experimental Biology | 2004
Bart Engels; Sandra van't Padje; Lau Blonden; Lies-Anne Severijnen; Ben A. Oostra; Rob Willemsen
SUMMARY The X-linked FMR1 gene, which is involved in the fragile X syndrome, forms a small gene family with its two autosomal homologs, FXR1 and FXR2. Mouse models for the FXR genes have been generated and proved to be valuable in elucidating the function of these genes, particularly in adult mice. Unfortunately, Fxr1 knockout mice die shortly after birth, necessitating an animal model that allows the study of the role of Fxr1p, the gene product of Fxr1, in early embryonic development. For gene function studies during early embryonic development the use of zebrafish as a model organism is highly advantageous. In this paper the suitability of the zebrafish as a model organism to study Fxr1p function during early development is explored. As a first step, we present here the initial characterization of Fxr1p in zebrafish. Fxr1p is present in all the cells from zebrafish embryos from the 2/4-cell stage onward; however, during late development a more tissue-specific distribution is found, with the highest expression in developing muscle. In adult zebrafish, Fxr1p is localized at the myoseptum and in costamere-like granules in skeletal muscle. In the testis, Fxr1p is localized in immature spermatogenic cells and in brain tissue Fxr1p displays a predominantly nuclear staining in neurons throughout the brain. Finally, the different tissue-specific isoforms of Fxr1p are characterized. Since the functional domains and the expression pattern of Fxr1p in zebrafish are comparable to those in higher vertebrates such as mouse and human, we conclude that the zebrafish is a highly suitable model for functional studies of Fxr1p.
Genesis | 2009
Sabrina Roth; Patrick Franken; Wendy van Veelen; Lau Blonden; Lalini Raghoebir; Berna Beverloo; Ellen van Drunen; Ernst J. Kuipers; Robbert J. Rottier; Riccardo Fodde; Ron Smits
To develop a sensitive and inducible system to study intestinal biology, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2‐M2 under control of the 12.4 kb murine Villin promoter. The newly generated Villin‐rtTA2‐M2 mice were then bred with the previously developed tetO‐HIST1H2BJ/GFP model to assess inducibility and tissue‐specificity. Expression of the histone H2B‐GFP fusion protein was observed exclusively upon doxycycline induction and was uniformly distributed throughout the intestinal epithelium. The Villin‐rtTA2‐M2 was also found to drive transgene expression in the developing mouse intestine. Furthermore, we could detect transgene expression in the proximal tubules of the kidney and in a population of alleged gastric progenitor cells. By administering different concentrations of doxycycline, we show that the Villin‐rtTA2‐M2 system drives transgene expression in a dosage‐dependent fashion. Thus, we have generated a novel doxycycline‐inducible mouse model, providing a valuable tool to study the effect of different gene dosages on intestinal physiology and pathology. genesis 47:7–13, 2009.
Cardiovascular Research | 2016
Remco Haasdijk; Wijnand den Dekker; Caroline Cheng; Dennie Tempel; Robert Szulcek; Frank L. Bos; Dorien M. A. Hermkens; Ihsan Chrifi; Maarten M. Brandt; Chris Van Dijk; Yan Juan Xu; Esther van de Kamp; Lau Blonden; Jan van Bezu; Judith C. Sluimer; Erik A.L. Biessen; Geerten P. van Nieuw Amerongen; H.J. Duckers
AIMS Impairment of the endothelial barrier leads to microvascular breakdown in cardiovascular disease and is involved in intraplaque haemorrhaging and the progression of advanced atherosclerotic lesions that are vulnerable to rupture. The exact mechanism that regulates vascular integrity requires further definition. Using a microarray screen for angiogenesis-associated genes during murine embryogenesis, we identified thrombospondin type I domain 1 (THSD1) as a new putative angiopotent factor with unknown biological function. We sought to characterize the role of THSD1 in endothelial cells during vascular development and cardiovascular disease. METHODS AND RESULTS Functional knockdown of Thsd1 in zebrafish embryos and in a murine retina vascularization model induced severe haemorrhaging without affecting neovascular growth. In human carotid endarterectomy specimens, THSD1 expression by endothelial cells was detected in advanced atherosclerotic lesions with intraplaque haemorrhaging, but was absent in stable lesions, implying involvement of THSD1 in neovascular bleeding. In vitro, stimulation with pro-atherogenic factors (3% O2 and TNFα) decreased THSD1 expression in human endothelial cells, whereas stimulation with an anti-atherogenic factor (IL10) showed opposite effect. Therapeutic evaluation in a murine advanced atherosclerosis model showed that Thsd1 overexpression decreased plaque vulnerability by attenuating intraplaque vascular leakage, subsequently reducing macrophage accumulation and necrotic core size. Mechanistic studies in human endothelial cells demonstrated that THSD1 activates FAK-PI3K, leading to Rac1-mediated actin cytoskeleton regulation of adherens junctions and focal adhesion assembly. CONCLUSION THSD1 is a new regulator of endothelial barrier function during vascular development and protects intraplaque microvessels against haemorrhaging in advanced atherosclerotic lesions.
Nature Genetics | 1995
Carla Rosenberg; Ralph J. Florijn; Frans M. van de Rijke; Lau Blonden; Ton K. Raap; Gert-Jan B. van Ommen; Johan T. den Dunnen
Genomics | 1996
Ralph J. Florijn; Frans M.van de Ruke; Hans Vrolijk; Lau Blonden; Marten H. Hofker; Johan T. den Dunnen; Hans J. Tanke; Gert-Jan B. van Ommen; Anton K. Raap
The International Journal of Developmental Biology | 2005
Lau Blonden; Sandra van't Padje; Lies-Anne Severijnen; Olivier Destrée; Ben A. Oostra; Rob Willemsen