Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauge Christensen is active.

Publication


Featured researches published by Lauge Christensen.


Faraday Discussions | 2014

Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules.

Rebecca Boll; Arnaud Rouzée; Marcus Adolph; Denis Anielski; Andrew Aquila; Sadia Bari; Cédric Bomme; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Lauge Christensen; Ryan Coffee; Niccola Coppola; Sankar De; Piero Decleva; Sascha W. Epp; Benjamin Erk; Frank Filsinger; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; André Hömke; Lotte Holmegaard; Per Johnsson; Jens S. Kienitz; Thomas Kierspel; Faton Krasniqi; Kai-Uwe Kühnel; Jochen Maurer; Marc Messerschmidt

This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.


Journal of Physics B | 2015

Strongly aligned gas-phase molecules at free-electron lasers.

Thomas Kierspel; Joss Wiese; Terry Mullins; Andy Aquila; Anton Barty; Richard Bean; Rebecca Boll; Sébastien Boutet; P. H. Bucksbaum; Henry N. Chapman; Lauge Christensen; Alan Fry; Mark S. Hunter; Jason E. Koglin; Mengning Liang; Valerio Mariani; Andrew J. Morgan; Adi Natan; Vladimir Petrovic; Daniel Rolles; Artem Rudenko; Kirsten Schnorr; Henrik Stapelfeldt; Stephan Stern; Jan Thøgersen; Chun Hong Yoon; Fenglin Wang; Sebastian Trippel; Jochen Küpper

Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment of


Journal of Chemical Physics | 2017

Alignment, Orientation, and Coulomb Explosion of Difluoroiodobenzene Studied with the Pixel Imaging Mass Spectrometry (PImMS) Camera

Kasra Amini; Rebecca Boll; Alexandra Lauer; Michael Burt; Jason W. L. Lee; Lauge Christensen; Felix Brauβe; Terence Mullins; Evgeny Savelyev; Utuq Ablikim; N. Berrah; Cédric Bomme; S. Düsterer; Benjamin Erk; Hauke Höppner; Per Johnsson; Thomas Kierspel; Faruk Krecinic; Jochen Küpper; Maria Müller; Erland Müller; Harald Redlin; Arnaud Rouzée; Nora Schirmel; Jan Thøgersen; Simone Techert; S. Toleikis; Rolf Treusch; Sebastian Trippel; Anatoli Ulmer


Journal of Physics B | 2016

Alignment-dependent strong-field ionization yields of carbonyl sulfide molecules induced by mid-infrared laser pulses

Rasmus R. Johansen; Kathrine Glerup Bay; Lauge Christensen; Jan Thøgersen; Darko Dimitrovski; Lars Bojer Madsen; Henrik Stapelfeldt

\langle {\mathrm{cos}}^{2}{\theta }_{2{\rm{D}}}\rangle =0.85


Structural Dynamics | 2018

Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization

Kasra Amini; Evgeny Savelyev; Felix Brauße; N. Berrah; Cédric Bomme; M. Brouard; Michael Burt; Lauge Christensen; S. Düsterer; Benjamin Erk; Hauke Höppner; Thomas Kierspel; Faruk Krecinic; Alexandra Lauer; Jason W. L. Lee; Maria Müller; Erland Müller; Terence Mullins; Harald Redlin; Nora Schirmel; Jan Thøgersen; Simone Techert; S. Toleikis; Rolf Treusch; Sebastian Trippel; Anatoli Ulmer; Claire Vallance; Joss Wiese; Per Johnsson; Jochen Küpper


Structural Dynamics | 2018

Photodissociation of Aligned

Kasra Amini; Nora Schirmel; Sebastian Trippel; M. Brouard; Henrik Stapelfeldt; Artem Rudenko; Cédric Bomme; Terence Mullins; Evgeny Savelyev; Maria Müller; Jochen Küpper; S. Toleikis; Jan Thøgersen; Per Johnsson; Harald Redlin; Faruk Krecinic; Anatoli Ulmer; Arnaud Rouzée; Hauke Höppner; Claire Vallance; Lauge Christensen; Rolf Treusch; Erland Mueller; Joss Wiese; Simone Techert; N. Berrah; Benjamin Erk; Rebecca Boll; Jason W. L. Lee; Felix Brauße

was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.


arXiv: Atomic Physics | 2017

\mathrm{CH_3I}

Evgeny Savelyev; Kasra Amini; Felix Brauße; N. Berrah; Cédric Bomme; M. Brouard; Michael Burt; Lauge Christensen; S. Düsterer; Benjamin Erk; Hauke Høe ppner; Thomas Kierspel; Faruk Krecinic; Alexandra Lauer; Jason W. L. Lee; Maria Müller; Erland Müller; Terence Mullins; Harald Redlin; Nora Schirmel; Jan Thøgersen; Simone Techert; S. Toleikis; Rolf Treusch; Sebastian Trippel; Anatoli Ulmer; Claire Vallance; Joss Wiese; Per Johnsson; Jochen Küpper

Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C6H3F2I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.


Frontiers in Optics 2012/Laser Science XXVIII (2012), paper LW2H.3 | 2012

and

Daniel Rolles; Rebecca Boll; Denis Anielski; Marcus Adolph; Andrew Aquila; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Lauge Christensen; Ryan Coffee; Siarhei Dziarzhytski; A V Golovin; Per Johnsson; Jochen Küpper; Arnaud Rouzée; Artem Rudenko; Henrik Stapelfeldt; Simone Techert; M. J. J. Vrakking; Joachim Ullrich

Strong-field ionization of carbonyl sulphide (OCS) molecules, induced by a linearly polarized mid-infrared (mid-IR) probe laser pulse is investigated experimentally and theoretically. We focus on the dependence of the single-ionization yield on the alignment of the molecular axis with respect to the probe pulse polarization axis. In the experiment, the OCS molecules are 1-dimensionally adiabatically aligned and ionized by a 12-femtosecond pulse centered at 1850 nm. The alignment-dependent ionization yields are compared to the theory based on the two-step model for strong-field ionization. Overall the measurements are consistent with the theoretical results.


27th International Conference on Photonic, Electronic and Atomic Collisions, ICPEAC 2011 | 2012

\mathrm{C_{6}H_{3}F_{2}I}

Benjamin Erk; A. Rudenko; Daniel Rolles; Benedikt Rudek; Lutz Foucar; Sascha W. Epp; Max J. Cryle; Ilme Schlichting; Christoph Bostedt; Sebastian Schorb; John D. Bozek; Arnaud Rouzée; Axel Hundertmark; T. Marchenko; Mark Simon; Frank Filsinger; Lauge Christensen; Shankar De; Sebastian Trippel; S. Wada; K. Ueda; Claus Dieter Schroeter; Joachim Ullrich

We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from the FLASH free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267\,nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon--iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon–iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.


Physical Review Letters | 2013

Molecules Probed with Time-Resolved Coulomb Explosion Imaging by Site-Selective XUV Ionization

Benjamin Erk; Daniel Rolles; Lutz Foucar; Benedikt Rudek; Sascha W. Epp; Max J. Cryle; Christoph Bostedt; Sebastian Schorb; John D. Bozek; Arnaud Rouzée; Axel Hundertmark; T. Marchenko; Marc Simon; Frank Filsinger; Lauge Christensen; Sankar De; Sebastian Trippel; Jochen Küpper; Henrik Stapelfeldt; S. Wada; K. Ueda; Michele Swiggers; Marc Messerschmidt; C. D. Schröter; R. Moshammer; Ilme Schlichting; Joachim Ullrich; Artem Rudenko

We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from the FLASH free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267\,nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon--iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon–iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

Collaboration


Dive into the Lauge Christensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Bostedt

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge