Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura A. Johnson is active.

Publication


Featured researches published by Laura A. Johnson.


Nature | 2010

COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

Cory M. Johannessen; Jesse S. Boehm; So Young Kim; Sapana Thomas; Leslie Wardwell; Laura A. Johnson; Caroline Emery; Nicolas Stransky; Alexandria P. Cogdill; Jordi Barretina; Giordano Caponigro; Haley Hieronymus; Ryan R. Murray; Kourosh Salehi-Ashtiani; David E. Hill; Marc Vidal; Jean Zhao; Xiaoping Yang; Ozan Alkan; Sungjoon Kim; Jennifer L. Harris; Christopher J. Wilson; Vic E. Myer; Peter Finan; David E. Root; Thomas M. Roberts; Todd R. Golub; Keith T. Flaherty; Reinhard Dummer; Barbara Weber

Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50–70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma—an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.


Nature | 2007

Characterizing the cancer genome in lung adenocarcinoma

Barbara A. Weir; Michele S. Woo; Gad Getz; Sven Perner; Li Ding; Rameen Beroukhim; William M. Lin; Michael A. Province; Aldi T. Kraja; Laura A. Johnson; Kinjal Shah; Mitsuo Sato; Roman K. Thomas; Justine A. Barletta; Ingrid B. Borecki; Stephen Broderick; Andrew C. Chang; Derek Y. Chiang; Lucian R. Chirieac; Jeonghee Cho; Yoshitaka Fujii; Adi F. Gazdar; Thomas J. Giordano; Heidi Greulich; Megan Hanna; Bruce E. Johnson; Mark G. Kris; Alex E. Lash; Ling Lin; Neal I. Lindeman

Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ∼12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.


Nature | 2011

The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset

Craig J. Ceol; Yariv Houvras; Judit Jané-Valbuena; Steve Bilodeau; David A. Orlando; Valentine Battisti; Lauriane Fritsch; William M. Lin; Travis J. Hollmann; Fabrizio Ferré; Caitlin Bourque; Christopher J. Burke; Laura Turner; Audrey Uong; Laura A. Johnson; Rameen Beroukhim; Craig H. Mermel; Massimo Loda; Slimane Ait-Si-Ali; Levi A. Garraway; Richard A. Young; Leonard I. Zon

The most common mutation in melanoma, BRAF(V600E), activates the BRAF serine/threonine kinase and causes excessive MAPK pathway activity1,2. BRAF(V600E)mutations are also present in benign melanocytic nevi3, highlighting the importance of additional genetic alterations in the genesis of malignant tumors. Such changes include recurrent copy number variations that result in the amplification of oncogenes4,5. For certain amplifications, the large number of genes in the interval has precluded an understanding of cooperating oncogenic events. Here, we have used a zebrafish melanoma model to test genes in a recurrently amplified region on chromosome 1 for the ability to cooperate with BRAF(V600E) and accelerate melanoma. SETDB1, an enzyme that methylates histone H3 on lysine 9 (H3K9), was found to significantly accelerate melanoma formation in the zebrafish. Chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-Seq) and gene expression analyses revealed target genes, including Hox genes, that are transcriptionally dysregulated in response to elevated SETDB1. Our studies establish SETDB1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis.


Genome Research | 2010

Integrative analysis of the melanoma transcriptome

Michael F. Berger; Joshua Z. Levin; Krishna Vijayendran; Andrey Sivachenko; Xian Adiconis; Jared Maguire; Laura A. Johnson; James Robinson; Roeland Verhaak; Carrie Sougnez; Robert C. Onofrio; Liuda Ziaugra; Kristian Cibulskis; Elisabeth Laine; Jordi Barretina; Wendy Winckler; David E. Fisher; Gad Getz; Matthew Meyerson; David B. Jaffe; Stacey B. Gabriel; Eric S. Lander; Reinhard Dummer; Andreas Gnirke; Chad Nusbaum; Levi A. Garraway

Global studies of transcript structure and abundance in cancer cells enable the systematic discovery of aberrations that contribute to carcinogenesis, including gene fusions, alternative splice isoforms, and somatic mutations. We developed a systematic approach to characterize the spectrum of cancer-associated mRNA alterations through integration of transcriptomic and structural genomic data, and we applied this approach to generate new insights into melanoma biology. Using paired-end massively parallel sequencing of cDNA (RNA-seq) together with analyses of high-resolution chromosomal copy number data, we identified 11 novel melanoma gene fusions produced by underlying genomic rearrangements, as well as 12 novel readthrough transcripts. We mapped these chimeric transcripts to base-pair resolution and traced them to their genomic origins using matched chromosomal copy number information. We also used these data to discover and validate base-pair mutations that accumulated in these melanomas, revealing a surprisingly high rate of somatic mutation and lending support to the notion that point mutations constitute the major driver of melanoma progression. Taken together, these results may indicate new avenues for target discovery in melanoma, while also providing a template for large-scale transcriptome studies across many tumor types.


Cancer Cell | 2008

The role of SPINK1 in ETS rearrangement-negative prostate cancers

Scott A. Tomlins; Daniel R. Rhodes; Jianjun Yu; Sooryanarayana Varambally; Rohit Mehra; Sven Perner; Francesca Demichelis; Beth E. Helgeson; Bharathi Laxman; David S. Morris; Qi Cao; Xuhong Cao; Ove Andrén; Katja Fall; Laura A. Johnson; John T. Wei; Rajal B. Shah; Hikmat Al-Ahmadie; James A. Eastham; Samson W. Fine; Kristina Hotakainen; Ulf-Håkan Stenman; Alex Tsodikov; William L. Gerald; Hans Lilja; Victor E. Reuter; Phillip W. Kantoff; Peter T. Scardino; Mark A. Rubin; Anders Bjartell

ETS gene fusions have been characterized in a majority of prostate cancers; however, the key molecular alterations in ETS-negative cancers are unclear. Here we used an outlier meta-analysis (meta-COPA) to identify SPINK1 outlier expression exclusively in a subset of ETS rearrangement-negative cancers ( approximately 10% of total cases). We validated the mutual exclusivity of SPINK1 expression and ETS fusion status, demonstrated that SPINK1 outlier expression can be detected noninvasively in urine, and observed that SPINK1 outlier expression is an independent predictor of biochemical recurrence after resection. We identified the aggressive 22RV1 cell line as a SPINK1 outlier expression model and demonstrate that SPINK1 knockdown in 22RV1 attenuates invasion, suggesting a functional role in ETS rearrangement-negative prostate cancers.


Nature | 2013

A melanocyte lineage program confers resistance to MAP kinase pathway inhibition

Cory M. Johannessen; Laura A. Johnson; Federica Piccioni; Aisha Townes; Dennie T. Frederick; Melanie K. Donahue; Rajiv Narayan; Keith T. Flaherty; Jennifer A. Wargo; David E. Root; Levi A. Garraway

Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF–MEK–ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF–MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF–MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF–MEK–ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.


Clinical Cancer Research | 2009

Prevalence of TMPRSS2-ERG Fusion Prostate Cancer among Men Undergoing Prostate Biopsy in the United States

Juan Miguel Mosquera; Rohit Mehra; Meredith M. Regan; Sven Perner; Elizabeth M. Genega; Gerri Bueti; Rajal B. Shah; Sandra M. Gaston; Scott A. Tomlins; John T. Wei; Michael Kearney; Laura A. Johnson; Jeffrey Tang; Arul M. Chinnaiyan; Mark A. Rubin; Martin G. Sanda

Purpose: Fusion of the TMPRSS2 prostate-specific gene with the ERG transcription factor is a putatively oncogenic gene rearrangement that is commonly found in prostate cancer tissue from men undergoing prostatectomy. However, the prevalence of the fusion was less common in samples of transurethral resection of the prostate from a Swedish cohort of patients with incidental prostate cancer followed by watchful waiting, raising the question as to whether the high prevalence in prostatectomy specimens reflects selection bias. We sought to determine the prevalence of TMPRSS2-ERG gene fusion among prostate-specific antigen–screened men undergoing prostate biopsy in the United States. Experimental Design: We studied 140 prostate biopsies from the same number of patients for TMPRSS2-ERG fusion status with a fluorescent in situ hybridization assay. One hundred and thirty-four samples (100 cancer and 34 benign) were assessable. Results:ERG gene rearrangement was detected in 46% of prostate biopsies that were found to have prostate cancer and in 0% of benign prostate biopsies (P < 0.0001). Evaluation of morphologic features showed that cribriform growth, blue-tinged mucin, macronucleoli, and collagenous micronodules were significantly more frequent in TMPRSS2-ERG fusion–positive prostate cancer biopsies than gene fusion–negative prostate cancer biopsies (P ≤ 0.04). No significant association with Gleason score was detected. In addition, non-Caucasian patients were less likely to have positive fusion status (P = 0.02). Conclusions: This is the first prospective North American multicenter study to characterize TMPRSS2-ERG prostate cancer prevalence in a cohort of patients undergoing needle biopsy irrespective of whether or not they subsequently undergo prostatectomy. Our results show that this gene rearrangement is common among North American men who have prostate cancer on biopsy, is absent in benign prostate biopsy, and is associated with specific morphologic features. These findings indicate a need for prospective studies to evaluate the relationship of TMPRSS2-ERG rearrangement with clinical course of screening-detected prostate cancer in North American men, and a need for the development of noninvasive screening tests to detect TMPRSS2-ERG rearrangement.


Science | 1993

Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11

Minora Koi; Laura A. Johnson; Linda M. Kalikin; Peter Little; Yusuke Nakamura; Andrew P. Feinberg

A fundamental problem in the identification and isolation of tumor suppressor and other growth-inhibiting genes is the loss of power of genetic complementation at the subchromosomal level. A direct genetic strategy was developed to isolate subchromosomal transferable fragments (STFs) from any chromosome, each containing a selectable marker within the human DNA, that could be transferred to any mammalian cell. As a test of the method, several overlapping STFs from 11p15 were shown to cause in vitro growth arrest of rhabdomyosarcoma cells. This activity mapped between the beta-globin and insulin genes.


The American Journal of Surgical Pathology | 2009

Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody.

Herbert Haack; Laura A. Johnson; Christopher J. Fry; Katherine Crosby; Roberto Polakiewicz; Edward B. Stelow; Seung-Mo Hong; Brian E. Schwartz; Michael J. Cameron; Mark A. Rubin; Martin C. Chang; Christopher A. French

NUT midline carcinoma (NMC) is a uniformly lethal malignancy that is defined by rearrangement of the nuclear protein in testis (NUT) gene on chromosome 15q14. NMCs are morphologically indistinguishable from other poorly differentiated carcinomas, and the diagnosis is usually made currently by fluorescence in situ hybridization (FISH). As normal NUT expression is confined to testis and ovary, we reasoned that an immunohistochemical (IHC) stain for NUT would be useful in diagnosing NMC. To this end, we raised a highly specific rabbit monoclonal antibody, C52, against a recombinant NUT polypeptide, and developed an IHC staining protocol. The sensitivity and specificity of C52 staining was evaluated in a panel of 1068 tissues, predominantly diverse types of carcinomas (n=906), including 30 NMCs. Split-apart FISH for NUT rearrangement was used as a “gold standard” diagnostic test for NMC. C52 immunoreactivity among carcinomas was confined to NMCs. IHC staining had a sensitivity of 87%, a specificity of 100%, a negative predictive value of 99%, and a positive predictive value of 100%. Two new cases of NMC containing BRD4-NUT fusions were detected by C52 IHC, but missed by conventional FISH. In both instances, these tumors contained cryptic BRD4-NUT rearrangements, as confirmed by FISH using a refined set of probes. Some germ cell tumors, including 64% of dysgerminomas, showed weak NUT immunoreactivity, consistent with the expression of NUT in normal germ cells. We conclude that IHC staining with the C52 monoclonal antibody is a highly sensitive and specific test that reliably distinguishes NMC from other forms of carcinoma. The NUT antibody is being prepared for commercial release and will be available in the near future.


Infection and Immunity | 2001

Complete Nucleotide Sequence and Analysis of the Locus of Enterocyte Effacement from Rabbit Diarrheagenic Escherichia coli RDEC-1

Chengru Zhu; Tonia S. Agin; Simon J. Elliott; Laura A. Johnson; Timothy E. Thate; James B. Kaper; Edgar C. Boedeker

ABSTRACT The pathogenicity island termed the locus of enterocyte effacement (LEE) is found in diverse attaching and effacing pathogens associated with diarrhea in humans and other animal species. To explore the relation of variation in LEE sequences to host specificity and genetic lineage, we determined the nucleotide sequence of the LEE region from a rabbit diarrheagenic Escherichia coli strain RDEC-1 (O15:H−) and compared it with those from human enteropathogenicE. coli (EPEC, O127:H6) and enterohemorrhagic E. coli (EHEC, O157:H7) strains. Differing from EPEC and EHEC LEEs, the RDEC-1 LEE is not inserted at selC and is flanked by an IS2 element and the lifA toxin gene. The RDEC-1 LEE contains a core region of 40 open reading frames, all of which are shared with the LEE of EPEC and EHEC. orf3 and the ERIC (enteric repetitive intergenic consensus) sequence present in the LEEs of EHEC and EPEC are absent from the RDEC-1 LEE. The predicted promoters of LEE1, LEE2, LEE3, tir, andLEE4 operons are highly conserved among the LEEs, although the upstream regions varied considerably fortir and the crucial LEE1 promoter, suggesting differences in regulation. Among the shared genes, high homology (>95% identity) between the RDEC-1 and the EPEC and EHEC LEEs at the predicted amino acid level was observed for the components of the type III secretion apparatus, the Ces chaperones, and the Ler regulator. In contrast, more divergence (66 to 88% identity) was observed in genes encoding proteins involved in host interaction, such as intimin (Eae) and the secreted proteins (Tir and Esps). A comparison of the highly variable genes from RDEC-1 with those from a number of attaching and effacing pathogens infecting different species and of different evolutionary lineages was performed. Although RDEC-1 diverges from some human-infecting EPEC and EHEC, most of the variation observed appeared to be due to evolutionary lineage rather than host specificity. Therefore, much of the observed hypervariability in genes involved in pathogenesis may not represent specific adaptation to different host species.

Collaboration


Dive into the Laura A. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan R. Dillman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kay Sauder

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Guan Xu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge