Laura A. N. Peferoen
VU University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura A. N. Peferoen.
Immunology | 2014
Sandra Amor; Laura A. N. Peferoen; Daphne Y.S. Vogel; Marjolein Breur; Paul van der Valk; David Baker; Johannes M. van Noort
Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well‐known in Alzheimers and Parkinsons diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.
Brain | 2010
Laura A. N. Peferoen; F. Lamers; L.N.R. Lodder; Wouter H. Gerritsen; Inge Huitinga; J. Melief; Gavin Giovannoni; Ute C. Meier; R Q Hintzen; Georges M. G. M. Verjans; G.P. van Nierop; W. Vos; Regina Peferoen-Baert; J.M. Middeldorp; P. van der Valk; Sandra Amor
Sir, Although recent studies have demonstrated a clear association of Epstein-Barr virus (EBV) infection with multiple sclerosis (Zaadstra et al. , 2008; Lunemann and Munz, 2009; Salvetti et al. , 2009), there has been much debate if and where the virus acts in the pathogenic cascade of multiple sclerosis and whether the virus needs to gain entry to the central nervous system (CNS). A recent study reported in Brain by Willis et al. (2009) showed that there is little evidence for the presence of EBV in the central nervous system of people with multiple sclerosis. These findings contrast greatly with the studies by Serafini et al. (2007) that have described abundant EBV positive cells in multiple sclerosis, and the presence of ectopic B cell follicles enriched with EBV infected cells in some patients. Willis and co-workers used a variety of validated methods to determine the presence of EBV in the CNS of patients with B cell infiltrates within the meninges and parenchyma. The paper described two crucial observations. Unlike Serafini et al. (2007), Willis et al. did not find the presence of EBV to be a characteristic feature of multiple sclerosis (aptly the title of the paper). Second, ectopic follicles, suggested by Serafini et al. to harbour EBV infected B cells, were not observed, despite scrutiny of meningeal tissues where these follicles should have been present. Clearly, the issue of whether EBV is indeed present in the CNS is crucial not only to determine the impact of the virus on the disease in the CNS, but also for diagnostic pathology in general. The studies reveal the vagaries of pathological detection methods for infectious agents such as EBV. Care in the practice and interpretation of such methodologies are of course key for correct diagnosis and proving pathogenic …
Journal of Neuroinflammation | 2012
Jack van Horssen; Shailender Singh; Susanne M. A. van der Pol; Markus Kipp; Jamie L. Lim; Laura A. N. Peferoen; Wouter H. Gerritsen; Evert-Jan Kooi; Maarten E. Witte; Jeroen J. G. Geurts; Helga E. de Vries; Regina Peferoen-Baert; Peter J. van den Elsen; Paul van der Valk; Sandra Amor
BackgroundIn brain tissues from multiple sclerosis (MS) patients, clusters of activated HLA-DR-expressing microglia, also referred to as preactive lesions, are located throughout the normal-appearing white matter. The aim of this study was to gain more insight into the frequency, distribution and cellular architecture of preactive lesions using a large cohort of well-characterized MS brain samples.MethodsHere, we document the frequency of preactive lesions and their association with distinct white matter lesions in a cohort of 21 MS patients. Immunohistochemistry was used to gain further insight into the cellular and molecular composition of preactive lesions.ResultsPreactive lesions were observed in a majority of MS patients (67%) irrespective of disease duration, gender or subtype of disease. Microglial clusters were predominantly observed in the vicinity of active demyelinating lesions and are not associated with T cell infiltrates, axonal alterations, activated astrocytes or blood–brain barrier disruption. Microglia in preactive lesions consistently express interleukin-10 and TNF-α, but not interleukin-4, whereas matrix metalloproteases-2 and −9 are virtually absent in microglial nodules. Interestingly, key subunits of the free-radical-generating enzyme NADPH oxidase-2 were abundantly expressed in microglial clusters.ConclusionsThe high frequency of preactive lesions suggests that it is unlikely that most of them will progress into full-blown demyelinating lesions. Preactive lesions are not associated with blood–brain barrier disruption, suggesting that an intrinsic trigger of innate immune activation, rather than extrinsic factors crossing a damaged blood–brain barrier, induces the formation of clusters of activated microglia.
Immunology | 2014
Laura A. N. Peferoen; Markus Kipp; Paul van der Valk; Johannes M. van Noort; Sandra Amor
Communication between the immune system and the central nervous system (CNS) is exemplified by cross‐talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross‐talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin‐forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross‐talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.
Journal of Neuropathology and Experimental Neurology | 2015
Laura A. N. Peferoen; Daphne Y.S. Vogel; Kimberley Ummenthum; Marjolein Breur; Priscilla Heijnen; Wouter H. Gerritsen; Regina Peferoen-Baert; Paul van der Valk; Christine D. Dijkstra; Sandra Amor
Abstract Similar to macrophages, microglia adopt diverse activation states and contribute to repair and tissue damage in multiple sclerosis. Using reverse transcription–quantitative polymerase chain reaction and immunohistochemistry, we show that in vitro M1-polarized (proinflammatory) human adult microglia express the distinctive markers CD74, CD40, CD86, and CCR7, whereas M2 (anti-inflammatory) microglia express mannose receptor and the anti-inflammatory cytokine CCL22. The expression of these markers was assessed in clusters of activated microglia in normal-appearing white matter (preactive lesions) and areas of remyelination, representing reparative multiple sclerosis lesions. We show that activated microglia in preactive and remyelinating lesions express CD74, CD40, CD86, and the M2 markers CCL22 and CD209, but not mannose receptor. To examine whether this intermediate microglia profile is static or dynamic and thus susceptible to changes in the microenvironment, we polarized microglia into M1 or M2 phenotype in vitro and then subsequently treated them with the opposing polarization regimen. These studies revealed that expression of CD40, CXCL10, and mannose receptor is dynamic and that microglia, like macrophages, can switch between M1 and M2 phenotypic profiles. Taken together, our data define the differential activation states of microglia during lesion development in multiple sclerosis–affected CNS tissues and underscore the plasticity of human adult microglia in vitro.
Acta Neuropathologica | 2014
Malika Bsibsi; Laura A. N. Peferoen; Inge R. Holtman; Peter J. Nacken; Wouter H. Gerritsen; Maarten E. Witte; Jack van Horssen; Bart J. L. Eggen; Paul van der Valk; Sandra Amor; Johannes M. van Noort
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
European Journal of Immunology | 2015
Daphne Y.S. Vogel; Gijs Kooij; Priscilla Heijnen; Marjolein Breur; Laura A. N. Peferoen; Paul van der Valk; Helga E. de Vries; Sandra Amor; Christine D. Dijkstra
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Infiltration of monocytes into the CNS is crucial for disease onset and progression. Animal studies indicate that granulocyte‐macrophages colony‐stimulating factor (GM‐CSF) may play an essential role in this process, possibly by acting on the migratory capacities of myeloid cells across the blood–brain barrier. This study describes the effect of GM‐CSF on human monocytes, macrophages, and microglia. Furthermore, the expression of GM‐CSF and its receptor was investigated in the CNS under healthy and pathological conditions. We show that GM‐CSF enhances monocyte migration across human blood–brain barrier endothelial cells in vitro. Next, immunohistochemical analysis on human brain tissues revealed that GM‐CSF is highly expressed by microglia and macrophages in MS lesions. The GM‐CSF receptor is expressed by neurons in the rim of combined gray/white matter lesions and astrocytes. Finally, the effect of GM‐CSF on human macrophages was determined, revealing an intermediate activation status, with a phenotype similar to that observed in active MS lesions. Together our data indicate that GM‐CSF is a powerful stimulator of monocyte migration, and is abundantly present in the inflamed CNS where it may act as an activator of macrophages and microglia.
Journal of Neuroinflammation | 2016
Saskia Maria Burm; Laura A. N. Peferoen; Ella A. Zuiderwijk-Sick; Krista G. Haanstra; Bert A. 't Hart; Paul van der Valk; Sandra Amor; Jan Bauer; Jeffrey J. Bajramovic
BackgroundInterleukin (IL)-1β is a pro-inflammatory cytokine that plays a role in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model for MS. Yet, detailed studies on IL-1β expression in different stages of MS lesion development and a comparison of IL-1β expression in MS and EAE are lacking.MethodsHere, we performed an extensive characterization of IL-1β expression in brain tissue of MS patients, which included different MS lesion types, and in brain tissue of rhesus macaques with EAE.ResultsIn rhesus EAE brain tissue, we observed prominent IL-1β staining in MHC class II+ cells within perivascular infiltrates and at the edges of large demyelinating lesions. Surprisingly, staining was localized to resident microglia or differentiated macrophages rather than to infiltrating monocytes, suggesting that IL-1β expression is induced within the central nervous system (CNS). By contrast, IL-1β staining in MS brain tissue was much less pronounced. Staining was found in the parenchyma of active and chronic active MS lesions and in nodules of MHC class II+ microglia in otherwise normal appearing white matter. IL-1β expression was detected in a minority of the nodules only, which could not be distinguished by the expression of pro- and anti-inflammatory markers. These nodules were exclusively found in MS, and it remains to be determined whether IL-1β+ nodules are destined to progress into active lesions or whether they merely reflect a transient response to cellular stress.ConclusionsAlthough the exact localization and relative intensity of IL-1β expression in EAE and MS is different, the staining pattern in both neuroinflammatory disorders is most consistent with the idea that the expression of IL-1β during lesion development is induced in the tissue rather than in the periphery.
Acta Neuropathologica | 2017
Gabriel Pascual; Jehangir S. Wadia; Xueyong Zhu; Elissa Keogh; Başak Kükrer; Jeroen van Ameijde; Hanna Inganäs; Berdien Siregar; Gerrard Perdok; Otto Diefenbach; Tariq Nahar; Imke Sprengers; Martin Koldijk; Els C. M. Brinkman-van der Linden; Laura A. N. Peferoen; Heng Zhang; Wenli Yu; Xinyi Li; Michelle Wagner; Veronica Moreno; Julie Kim; Martha Costa; Kiana West; Zara Fulton; Lucy Chammas; Nancy Luckashenak; Lauren Fletcher; Trevin Holland; Carrie Arnold; R. Anthony Williamson
Several reports have described the presence of antibodies against Alzheimer’s disease-associated hyperphosphorylated forms of tau in serum of healthy individuals. To characterize the specificities that can be found, we interrogated peripheral IgG+ memory B cells from asymptomatic blood donors for reactivity to a panel of phosphorylated tau peptides using a single-cell screening assay. Antibody sequences were recovered, cloned, and expressed as full-length IgGs. In total, 52 somatically mutated tau-binding antibodies were identified, corresponding to 35 unique clonal families. Forty-one of these antibodies recognize epitopes in the proline-rich and C-terminal domains, and binding of 26 of these antibodies is strictly phosphorylation dependent. Thirteen antibodies showed inhibitory activity in a P301S lysate seeded in vitro tau aggregation assay. Two such antibodies, CBTAU-7.1 and CBTAU-22.1, which bind to the proline-rich and C-terminal regions of tau, respectively, were characterized in more detail. CBTAU-7.1 recognizes an epitope that is similar to that of murine anti-PHF antibody AT8, but has different phospho requirements. Both CBTAU-7.1 and CBTAU-22.1 detect pathological tau deposits in post-mortem brain tissue. CBTAU-7.1 reveals a similar IHC distribution pattern as AT8, immunostaining (pre)tangles, threads, and neuritic plaques. CBTAU-22.1 shows selective detection of neurofibrillary changes by IHC. Taken together, these results suggest the presence of an ongoing antigen-driven immune response against tau in healthy individuals. The wide range of specificities to tau suggests that the human immune repertoire may contain antibodies that can serve as biomarkers or be exploited for therapy.
Immunology | 2016
Laura A. N. Peferoen; Marjolein Breur; Sarah van de Berg; Regina Peferoen-Baert; Erik Boddeke; Paul van der Valk; Gareth Pryce; Johannes M. van Noort; David Baker; Sandra Amor
Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing–remitting episodes and secondary‐progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8‐ to 12‐week‐old and 12‐month‐old ABH mice. Compared with the relapsing–remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3+ T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T‐cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat‐shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing–remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease.