Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Annaratone is active.

Publication


Featured researches published by Laura Annaratone.


PLOS ONE | 2013

Urinary Exosomal MicroRNAs in Incipient Diabetic Nephropathy

Federica Barutta; Marinella Tricarico; Alessandro Corbelli; Laura Annaratone; Silvia Pinach; Serena Grimaldi; Graziella Bruno; Daniela Cimino; Daniela Taverna; Maria Chiara Deregibus; Maria Pia Rastaldi; Paolo Cavallo Perin; Gabriella Gruden

MicroRNAs (miRNAs), a class of small non-protein-encoding RNAs, regulate gene expression via suppression of target mRNAs. MiRNAs are present in body fluids in a remarkable stable form as packaged in microvesicles of endocytic origin, named exosomes. In the present study, we have assessed miRNA expression in urinary exosomes from type 1 diabetic patients with and without incipient diabetic nephropathy. Results showed that miR-130a and miR-145 were enriched, while miR-155 and miR-424 reduced in urinary exosomes from patients with microalbuminuria. Similarly, in an animal model of early experimental diabetic nephropathy, urinary exosomal miR-145 levels were increased and this was paralleled by miR-145 overexpression within the glomeruli. Exposure of cultured mesangial cells to high glucose increased miR-145 content in both mesangial cells and mesangial cells-derived exosomes, providing a potential mechanism for diabetes-induced miR-145 overexpression. In conclusion, urinary exosomal miRNA content is altered in type 1 diabetic patients with incipient diabetic nephropathy and miR-145 may represent a novel candidate biomarker/player in the complication.


Hypertension | 2014

Somatic ATP1A1, ATP2B3, and KCNJ5 Mutations in Aldosterone-Producing Adenomas

Tracy A. Williams; Silvia Monticone; Vivien Rodacker Schack; Julia Stindl; Jacopo Burrello; Fabrizio Buffolo; Laura Annaratone; Isabella Castellano; Felix Beuschlein; Martin Reincke; Barbara Lucatello; Vanessa Ronconi; Francesco Fallo; Giampaolo Bernini; Mauro Maccario; Gilberta Giacchetti; Franco Veglio; Richard Warth; Bente Vilsen; Paolo Mulatero

Aldosterone-producing adenomas (APAs) cause a sporadic form of primary aldosteronism and somatic mutations in the KCNJ5 gene, which encodes the G-protein–activated inward rectifier K+ channel 4, GIRK4, account for ≈40% of APAs. Additional somatic APA mutations were identified recently in 2 other genes, ATP1A1 and ATP2B3, encoding Na+/K+-ATPase 1 and Ca2+-ATPase 3, respectively, at a combined prevalence of 6.8%. We have screened 112 APAs for mutations in known hotspots for genetic alterations associated with primary aldosteronism. Somatic mutations in ATP1A1, ATP2B3, and KCNJ5 were present in 6.3%, 0.9%, and 39.3% of APAs, respectively, and included 2 novel mutations (Na+/K+-ATPase p.Gly99Arg and GIRK4 p.Trp126Arg). CYP11B2 gene expression was higher in APAs harboring ATP1A1 and ATP2B3 mutations compared with those without these or KCNJ5 mutations. Overexpression of Na+/K+-ATPase p.Gly99Arg and GIRK4 p.Trp126Arg in HAC15 adrenal cells resulted in upregulation of CYP11B2 gene expression and its transcriptional regulator NR4A2. Structural modeling of the Na+/K+-ATPase showed that the Gly99Arg substitution most likely interferes with the gateway to the ion binding pocket. In vitro functional assays demonstrated that Gly99Arg displays severely impaired ATPase activity, a reduced apparent affinity for Na+ activation of phosphorylation and K+ inhibition of phosphorylation that indicate decreased Na+ and K+ binding, respectively. Moreover, whole cell patch-clamp studies established that overexpression of Na+/K+-ATPase Gly99Arg causes membrane voltage depolarization. In conclusion, somatic mutations are common in APAs that result in an increase in CYP11B2 gene expression and may account for the dysregulated aldosterone production in a subset of patients with sporadic primary aldosteronism.


PLOS ONE | 2011

Formalin Fixation at Low Temperature Better Preserves Nucleic Acid Integrity

Gianni Bussolati; Laura Annaratone; Enzo Medico; Giuseppe D'Armento; Anna Sapino

Fixation with formalin, a widely adopted procedure to preserve tissue samples, leads to extensive degradation of nucleic acids and thereby compromises procedures like microarray-based gene expression profiling. We hypothesized that RNA fragmentation is caused by activation of RNAses during the interval between formalin penetration and tissue fixation. To prevent RNAse activation, a series of tissue samples were kept under-vacuum at 4°C until fixation and then fixed at 4°C, for 24 hours, in formalin followed by 4 hours in ethanol 95%. This cold-fixation (CF) procedure preserved DNA and RNA, so that RNA segments up to 660 bp were efficiently amplified. Histological and immunohistochemical features were fully comparable with those of standard fixation. Microarray-based gene expression profiles were comparable with those obtained on matched frozen samples for probes hybridizing within 700 bases from the reverse transcription start site. In conclusion, CF preserves tissues and nucleic acids, enabling reliable gene expression profiling of fixed tissues.


Oncotarget | 2016

Luminal long non-coding RNAs regulated by estrogen receptor alpha in a ligand-independent manner show functional roles in breast cancer

Valentina Miano; Giulio Ferrero; Stefania Reineri; Livia Caizzi; Laura Annaratone; Laura Ricci; Santina Cutrupi; Isabella Castellano; Francesca Cordero; Michele De Bortoli

Estrogen Receptor alpha (ERα) activation by estrogenic hormones induces luminal breast cancer cell proliferation. However, ERα plays also important hormone-independent functions to maintain breast tumor cells epithelial phenotype. We reported previously by RNA-Seq that in MCF-7 cells in absence of hormones ERα down-regulation changes the expression of several genes linked to cellular development, representing a specific subset of estrogen-induced genes. Here, we report regulation of long non-coding RNAs from the same experimental settings. A list of 133 Apo-ERα-Regulated lncRNAs (AER-lncRNAs) was identified and extensively characterized using published data from cancer cell lines and tumor tissues, or experiments on MCF-7 cells. For several features, we ran validation using cell cultures or fresh tumor biopsies. AER-lncRNAs represent a specific subset, only marginally overlapping estrogen-induced transcripts, whose expression is largely restricted to luminal cells and which is able to perfectly classify breast tumor subtypes. The most abundant AER-lncRNA, DSCAM-AS1, is expressed in ERα+ breast carcinoma, but not in pre-neoplastic lesions, and correlates inversely with EMT markers. Down-regulation of DSCAM-AS1 recapitulated, in part, the effect of silencing ERα, i.e. growth arrest and induction of EMT markers. In conclusion, we report an ERα-dependent lncRNA set representing a novel luminal signature in breast cancer cells.


Journal of Cellular and Molecular Medicine | 2009

Technical limits of comparison of step-sectioning,immunohistochemistry and RT-PCR on breast cancer sentinel nodes: a study on methacarn-fixed tissue

Lorenzo Daniele; Laura Annaratone; Elena Allia; Sara Mariani; Enrico Armando; Martino Bosco; Luigia Macrì; Paola Cassoni; Giuseppe D'Armento; Gianni Bussolati; Gábor Cserni; Anna Sapino

The optimal pathological assessment of sentinel nodes (SLNs) in breast cancer is a matter of debate. Currently, multilevel histological evaluation and immunohistochemistry (IHC) are recommended, but alternative RT‐PCR procedures have been developed. To assess the reliability of these different procedures, we devised a step‐sectioning protocol at 100 micron‐intervals of 74 SLNs using methacarn fixation. mRNA was extracted from sections collected from levels 4 to 5. Mammaglobin, CEA and CK19 were used for RT‐PCR. mRNA extraction was successful in 69 SLNs. Of these, 7 showed macrometastases (>2mm), 2 showed micrometastases (<2 mm) and 7 showed isolated tumour cells (ITC) by IHC. RT‐PCR was positive for the three markers in 6 of 7 macrometastases and in 1 of 2 micrometastases. In the 2 RT‐PCR negative cases, metastases were detected only on sections distant from those analysed by RT‐PCR. CEA and/or CK19 were positive by RT‐PCR in 3 of 7 ITC and in 23 morphologically negative SLNs. In conclusion, the main goal of our study was to show that the use of alternate sections of the same sample for different procedures is the key reason for the discrepancies between molecular and morphological analyses of SLN. We believe that only prospective studies with quantitative mRNA analysis of specific metastatic markers on the whole lymph node can elucidate the utility of molecular assessments of SLN.


Oncologist | 2014

Gene Status in HER2 Equivocal Breast Carcinomas: Impact of Distinct Recommendations and Contribution of a Polymerase Chain Reaction-Based Method

Anna Sapino; Francesca Maletta; Ludovica Verdun di Cantogno; Luigia Macrì; C. Botta; Patrizia Gugliotta; Maria Stella Scalzo; Laura Annaratone; Davide Balmativola; Francesca Pietribiasi; Paolo Bernardi; Riccardo Arisio; Laura Viberti; Stefano Guzzetti; Renzo Orlassino; Cristiana Ercolani; Marcella Mottolese; Giuseppe Viale; Caterina Marchiò

BACKGROUND The primary objectives of this study on carcinomas with equivocal HER2 expression were to assess the impact of distinct recommendations with regard to identifying patients eligible for anti-HER2 agents by fluorescence in situ hybridization (FISH) and to elucidate whether multiplex ligation-dependent probe amplification (MLPA) may be of support in assessing HER2 gene status. METHODS A cohort of 957 immunohistochemistry-evaluated HER2-equivocal cases was analyzed by dual-color FISH. The results were assessed according to U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines and American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP) 2007 and 2013 guidelines for dual- and single-signal in situ hybridization (ISH) assays. A subgroup of 112 cases was subjected to MLPA. RESULTS HER2 amplification varied from 15% (ASCO/CAP 2007 HER2/CEP17 ratio) to 29.5% (FDA/EMA HER2 copy number). According to the ASCO/CAP 2013 interpretation of the dual-signal HER2 assay, ISH-positive carcinomas accounted for 19.7%. In contrast with the ASCO/CAP 2007 ratio, this approach labeled as positive all 32 cases (3.34%) with a HER2/CEP17 ratio <2 and an average HER2 copy number ≥6.0 signals per cell. In contrast, only one case showing a HER2 copy number <4 but a ratio ≥2 was diagnosed as positive. MLPA data correlated poorly with FISH results because of the presence of heterogeneous HER2 amplification in 33.9% of all amplified carcinomas; however, MLPA ruled out HER2 amplification in 75% of ISH-evaluated HER2-equivocal carcinomas. CONCLUSION The ASCO/CAP 2013 guidelines seem to improve the identification of HER2-positive carcinomas. Polymerase chain reaction-based methods such as MLPA can be of help, provided that heterogeneous amplification has been ruled out by ISH.


PLOS ONE | 2013

A collection of primary tissue cultures of tumors from vacuum packed and cooled surgical specimens: a feasibility study.

Laura Annaratone; Caterina Marchiò; Rosalia Russo; Luigi Ciardo; Sandra Milena Rondon-Lagos; Margherita Goia; Maria Stella Scalzo; Stefania Bolla; Isabella Castellano; Ludovica Verdun di Cantogno; Gianni Bussolati; Anna Sapino

Primary cultures represent an invaluable tool to set up functional experimental conditions; however, creation of tissue cultures from solid tumors is troublesome and often unproductive. Several features can affect the success rate of primary cultures, including technical issues from pre-analytical procedures employed in surgical theaters and pathology laboratories. We have recently introduced a new method of collection, transfer, and preservation of surgical specimens that requires immediate vacuum sealing of excised specimens at surgical theaters, followed by time-controlled transferring at 4°C to the pathology laboratory. Here we investigate the feasibility and performance of short-term primary cell cultures derived from vacuum packed and cooled (VPAC) preserved tissues. Tissue fragments were sampled from 52 surgical specimens of tumors larger than 2 cm for which surgical and VPAC times (the latter corresponding to cold ischemia time) were recorded. Cell viability was determined by trypan blue dye-exclusion assay and hematoxylin and eosin and immunohistochemical stainings were performed to appreciate morphological and immunophenotypical features of cultured cells. Cell viability showed a range of 84–100% in 44 out of 52 (85%) VPAC preserved tissues. Length of both surgical and VPAC times affected cell viability: the critical surgical time was set around 1 hour and 30 minutes, while cells preserved a good viability when kept for about 24 hours of vacuum at 4°C. Cells were maintained in culture for at least three passages. Immunocytochemistry confirmed the phenotype of distinct populations, that is, expression of cytokeratins in epithelioid cells and of vimentin in spindle cells. Our results suggest that VPAC preserved tissues may represent a reliable source for creation of primary cell cultures and that a careful monitoring of surgical and cold ischemia times fosters a good performance of primary tissue cultures.


Cell Cycle | 2014

miR-221/222 control luminal breast cancer tumor progression by regulating different targets

Patrizia Dentelli; Matteo Traversa; Arturo Rosso; Gabriele Togliatto; Cristina Olgasi; Caterina Marchiò; Paolo Provero; Antonio Lembo; Giulia Bon; Laura Annaratone; Anna Sapino; Rita Falcioni; Maria Felice Brizzi

α6β4 integrin is an adhesion molecule for laminin receptors involved in tumor progression. We present a link between β4 integrin expression and miR-221/222 in the most prevalent human mammary tumor: luminal invasive carcinomas (Lum-ICs). Using human primary tumors that display different β4 integrin expression and grade, we show that miR-221/222 expression inversely correlates with tumor proliferating index, Ki67. Interestingly, most high-grade tumors express β4 integrin and low miR-221/222 levels. We ectopically transfected miR-221/222 into a human-derived mammary tumor cell line that recapitulates the luminal subtype to investigate whether miR-221/222 regulates β4 expression. We demonstrate that miR-221/222 overexpression results in β4 expression downregulation, breast cancer cell proliferation, and invasion inhibition. The role of miR-221/222 in driving β4 integrin expression is also confirmed via mutating the miR-221/222 seed sequence for β4 integrin 3′UTR. Furthermore, we show that these 2 miRNAs are also key breast cancer cell proliferation and invasion regulators, via the post-transcriptional regulation of signal transducer and activator of transcription 5A (STAT5A) and of a disintegrin and metalloprotease-17 (ADAM-17). We further confirm these data by silencing ADAM-17, using a dominant-negative or an activated STAT5A form. miR-221/222-driven β4 integrin, STAT5A, and ADAM-17 did not occur in MCF-10A cells, denoted “normal” breast epithelial cells, indicating that the mechanism is cancer cell-specific. These results provide the first evidence of a post-transcriptional mechanism that regulates β4 integrin, STAT5A, and ADAM-17 expression, thus controlling breast cancer cell proliferation and invasion. Pre-miR-221/222 use in the aggressive luminal subtype may be a powerful therapeutic anti-cancer strategy.


EMBO Reports | 2016

ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules.

Marta Gai; Federico Bianchi; Cristiana Vagnoni; Fiammetta Vernì; Silvia Bonaccorsi; Selina Pasquero; Gaia Berto; Francesco Sgrò; Alessandra Maria Adelaide Chiotto; Laura Annaratone; Anna Sapino; Anna Bergo; Nicoletta Landsberger; Jacqueline Bond; Wieland B. Huttner; Ferdinando Di Cunto

Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT‐stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral‐MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.


Laboratory Investigation | 2015

Critical roles of specimen type and temperature before and during fixation in the detection of phosphoproteins in breast cancer tissues

Sibylle Gündisch; Laura Annaratone; Christian Beese; Enken Drecol; Caterina Marchiò; Elena Quaglino; Anna Sapino; Karl-Friedrich Becker; Gianni Bussolati

The most efficient approach for therapy selection to inhibit the deregulated kinases in cancer tissues is to measure their phosphorylation status prior to the treatment. The aim of our study was to evaluate the influence of pre-analytical parameters (cold ischemia time, temperature before and during tissue fixation, and sample type) on the levels of proteins and phosphoproteins in breast cancer tissues, focusing on the PI3 kinase/AKT pathway. The BALB-neuT mouse breast cancer model expressing HER2 and pAKT proteins and human biopsy and resection specimens were analyzed. By using quantitative reverse phase protein arrays (RPPA), 9 proteins and 16 phosphoproteins relevant to breast cancer biology were assessed. Cold temperatures before and during fixation resulted in a marked improvement in the preservation of the reactivity of biological markers (eg, ER, HER2) in general and, specifically, pHER2 and pAKT. Some phosphoproteins, eg, pHER2 and pAKT, were more sensitive to prolonged cold ischemia times than others (eg, pS6RP and pSTAT5). By comparing the phosphoprotein levels in core needle biopsies with those in resection specimens, we found a marked decrease in many phosphoproteins in the latter. Cold conditions can improve the preservation of proteins and phosphoproteins in breast cancer tissues. Biopsies≤1 mm in size are the preferred sample type for assessing the activity of deregulated kinases for personalized cancer treatments because the phosphoprotein levels are better preserved compared with resection specimens. Each potential new (phospho)protein biomarker should be tested for its sensitivity to pre-analytical processing prior to the development of a diagnostic assay.

Collaboration


Dive into the Laura Annaratone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge