Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Arrigoni is active.

Publication


Featured researches published by Laura Arrigoni.


Cell Reports | 2016

Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue

Delphine Duteil; Milica Tosic; Franziska Lausecker; Hatice Z. Nenseth; Judith M. Müller; Sylvia Urban; Dominica Willmann; Kerstin Petroll; Nadia Messaddeq; Laura Arrigoni; Thomas Manke; Jan-Wilhelm Kornfeld; Jens C. Brüning; Vyacheslav Zagoriy; Michaël Méret; Jörn Dengjel; Toufike Kanouni; Roland Schüle

Summary Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT-selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1-deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT.


Nucleic Acids Research | 2016

Standardizing chromatin research: a simple and universal method for ChIP-seq

Laura Arrigoni; Andreas S. Richter; Emily Betancourt; Kerstin Bruder; Sarah Diehl; Thomas Manke; Ulrike Bönisch

Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a key technique in chromatin research. Although heavily applied, existing ChIP-seq protocols are often highly fine-tuned workflows, optimized for specific experimental requirements. Especially the initial steps of ChIP-seq, particularly chromatin shearing, are deemed to be exceedingly cell-type-specific, thus impeding any protocol standardization efforts. Here we demonstrate that harmonization of ChIP-seq workflows across cell types and conditions is possible when obtaining chromatin from properly isolated nuclei. We established an ultrasound-based nuclei extraction method (NEXSON: Nuclei EXtraction by SONication) that is highly effective across various organisms, cell types and cell numbers. The described method has the potential to replace complex cell-type-specific, but largely ineffective, nuclei isolation protocols. By including NEXSON in ChIP-seq workflows, we completely eliminate the need for extensive optimization and sample-dependent adjustments. Apart from this significant simplification, our approach also provides the basis for a fully standardized ChIP-seq and yields highly reproducible transcription factor and histone modifications maps for a wide range of different cell types. Even small cell numbers (∼10 000 cells per ChIP) can be easily processed without application of modified chromatin or library preparation protocols.


Epigenetics & Chromatin | 2016

Epigenetic dynamics of monocyte-to-macrophage differentiation

Stefan Wallner; Christopher Schröder; Elsa Leitão; Tea Berulava; Claudia Haak; Daniela Beißer; Sven Rahmann; Andreas S. Richter; Thomas Manke; Ulrike Bönisch; Laura Arrigoni; Sebastian Fröhler; Filippos Klironomos; Wei Chen; Nikolaus Rajewsky; Fabian Müller; Peter Ebert; Thomas Lengauer; Matthias Barann; Philip Rosenstiel; Gilles Gasparoni; Karl Nordström; Jörn Walter; Benedikt Brors; Gideon Zipprich; Bärbel Felder; Ludger Klein-Hitpass; Corinna Attenberger; Gerd Schmitz; Bernhard Horsthemke

BackgroundMonocyte-to-macrophage differentiation involves major biochemical and structural changes. In order to elucidate the role of gene regulatory changes during this process, we used high-throughput sequencing to analyze the complete transcriptome and epigenome of human monocytes that were differentiated in vitro by addition of colony-stimulating factor 1 in serum-free medium.ResultsNumerous mRNAs and miRNAs were significantly up- or down-regulated. More than 100 discrete DNA regions, most often far away from transcription start sites, were rapidly demethylated by the ten eleven translocation enzymes, became nucleosome-free and gained histone marks indicative of active enhancers. These regions were unique for macrophages and associated with genes involved in the regulation of the actin cytoskeleton, phagocytosis and innate immune response.ConclusionsIn summary, we have discovered a phagocytic gene network that is repressed by DNA methylation in monocytes and rapidly de-repressed after the onset of macrophage differentiation.


Biochimica et Biophysica Acta | 2016

Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration.

Michela Dell'Orco; Pamela Milani; Laura Arrigoni; Orietta Pansarasa; Valentina Sardone; Elisa Maffioli; Francesca Polveraccio; Matteo Bordoni; Luca Diamanti; Mauro Ceroni; Fiorenzo A. Peverali; Gabriellla Tedeschi; Cristina Cereda

BACKGROUND It is still unclear whether oxidative stress (OS) is a disease consequence or is directly involved in the etiology of neurodegenerative disorders (NDs) onset and/or progression; however, many of these conditions are associated with increased levels of oxidation markers and damaged cell components. Previously we demonstrated the accumulation of reactive oxygen species (ROS) and increased SOD1 gene expression in H2O2-treated SH-SY5Y cells, recapitulating pathological features of Amyotrophic Lateral Sclerosis (ALS). Since we observed a post-transcriptional regulation of SOD1 gene in this cellular model, we investigated the transcriptional regulation of SOD1 mRNA under oxidative stress (OS). RESULTS In response to H2O2 treatment, PolII increased its association to SOD1 promoter. Electrophoretic mobility shift assays and mass spectrometry analyses on SOD1 promoter highlighted the formation of a transcriptional complex bound to the ARE sequences. Western Blotting experiments showed that in our in vitro model, H2O2 exposure increases Nrf2 expression in the nuclear fraction while immunoprecipitation confirmed its phosphorylation and release from Keap1 inhibition. However, H2O2 treatment did not modify Nrf2 binding on SOD1 promoter, which seems to be regulated by different transcription factors (TFs). CONCLUSIONS Although our data suggest that SOD1 is transcriptionally regulated in response to OS, Nrf2 does not appear to associate with SOD1 promoter in this cellular model of neurodegeneration. Our results open new perspectives in the comprehension of two key antioxidant pathways involved in neurodegenerative disorders.


Human Molecular Genetics | 2013

XPD mutations in trichothiodystrophy hamper collagen VI expression and reveal a role of TFIIH in transcription derepression

Donata Orioli; Emmanuel Compe; Tiziana Nardo; Manuela Mura; Christophe Giraudon; Elena Botta; Laura Arrigoni; Fiorenzo A. Peverali; Jean-Marc Egly; Miria Stefanini

Mutations in the XPD subunit of the transcription/DNA repair factor (TFIIH) give rise to trichothiodystrophy (TTD), a rare hereditary multisystem disorder with skin abnormalities. Here, we show that TTD primary dermal fibroblasts contain low amounts of collagen type VI alpha1 subunit (COL6A1), a fundamental component of soft connective tissues. We demonstrate that COL6A1 expression is downregulated by the sterol regulatory element-binding protein-1 (SREBP-1) whose removal from the promoter is a key step in COL6A1 transcription upregulation in response to cell confluence. We provide evidence for TFIIH being involved in transcription derepression, thus highlighting a new function of TFIIH in gene expression regulation. The lack of COL6A1 upregulation in TTD is caused by the inability of the mutated TFIIH complexes to remove SREBP-1 from COL6A1 promoter and to sustain the subsequent high rate of COL6A1 transcription. This defect might account for the pathologic features that TTD shares with hereditary disorders because of mutations in COL6A genes.


Cell Death and Disease | 2017

Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4

Josefina Castex; Dominica Willmann; Toufike Kanouni; Laura Arrigoni; Yan Li; Marcel Friedrich; Michael Schleicher; Simon Wöhrle; Mark Pearson; Norbert Kraut; Michaël Méret; Thomas Manke; Eric Metzger; Roland Schüle; Thomas Günther

Coordination of energy metabolism is essential for homeostasis of stem cells, whereas an imbalance in energy homeostasis causes disease and accelerated aging. Here we show that deletion or enzymatic inactivation of lysine-specific demethylase 1 (Lsd1) triggers senescence in trophoblast stem cells (TSCs). Genome-wide transcriptional profiling of TSCs following Lsd1 inhibition shows gene set enrichment of aging and metabolic pathways. Consistently, global metabolomic and phenotypic analyses disclose an unbalanced redox status, decreased glutamine anaplerosis and mitochondrial function. Loss of homeostasis is caused by increased expression of sirtuin 4 (Sirt4), a Lsd1-repressed direct target gene. Accordingly, Sirt4 overexpression in wild-type TSCs recapitulates the senescence phenotype initiated by Lsd1 deletion or inhibition. Inversely, absence of Lsd1 enzymatic activity concomitant with knockdown of Sirt4 reestablishes normal glutamine anaplerosis, redox balance and mitochondrial function. In conclusion, by repression of Sirt4, Lsd1 directs the epigenetic control of TSC immortality via maintenance of metabolic flexibility.


Cell Metabolism | 2018

The Polycomb-Dependent Epigenome Controls β Cell Dysfunction, Dedifferentiation, and Diabetes

Tess Tsai-Hsiu Lu; Steffen Heyne; Erez Dror; Eduard Casas; Laura Leonhardt; Thorina Boenke; Chih-Hsiang Yang; Sagar; Laura Arrigoni; Kevin Dalgaard; Raffaele Teperino; Lennart Enders; Madhan Selvaraj; Marius Ruf; Sunil Jayaramaiah Raja; Huafeng Xie; Ulrike Boenisch; Stuart H. Orkin; Francis C. Lynn; Brad G. Hoffman; Dominic Grün; Tanya Vavouri; Adelheid Lempradl; Andrew Pospisilik

Summary To date, it remains largely unclear to what extent chromatin machinery contributes to the susceptibility and progression of complex diseases. Here, we combine deep epigenome mapping with single-cell transcriptomics to mine for evidence of chromatin dysregulation in type 2 diabetes. We find two chromatin-state signatures that track β cell dysfunction in mice and humans: ectopic activation of bivalent Polycomb-silenced domains and loss of expression at an epigenomically unique class of lineage-defining genes. β cell-specific Polycomb (Eed/PRC2) loss of function in mice triggers diabetes-mimicking transcriptional signatures and highly penetrant, hyperglycemia-independent dedifferentiation, indicating that PRC2 dysregulation contributes to disease. The work provides novel resources for exploring β cell transcriptional regulation and identifies PRC2 as necessary for long-term maintenance of β cell identity. Importantly, the data suggest a two-hit (chromatin and hyperglycemia) model for loss of β cell identity in diabetes.


Cell Death and Disease | 2017

The histone code reader Spin1 controls skeletal muscle development

Holger Greschik; Delphine Duteil; Nadia Messaddeq; Dominica Willmann; Laura Arrigoni; Manuela Sum; Manfred Jung; Daniel Metzger; Thomas Manke; Thomas Günther; Roland Schüle

While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1M5 mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1M5 mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1M5 mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1M5 fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1M5 mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease.


bioRxiv | 2018

Parkour LIMS: facilitating high-quality sample preparation in next generation sequencing

Evgeny Anatskiy; Devon P. Ryan; Bjoern Gruening; Laura Arrigoni; Thomas Manke; Ulrike Boenisch

Summary This paper presents Parkour, a software package for sample processing and quality management of next generation sequencing data and samples. Starting with user requests, Parkour allows tracking and assessing samples based on predefined quality criteria through different stages of the sample preparation workflow. Ideally suited for academic core laboratories, the software aims to maximize efficiency and reduce turnaround time by intelligent sample grouping and a clear assignment of staff to work units. Tools for automated invoicing, interactive statistics on facility usage and simple report generation minimize administrative tasks. Provided as a web application, Parkour is a convenient tool for both deep sequencing service users and laboratory personal. A set of web APIs allow coordinated information sharing with local and remote bioinformaticians. The flexible structure allows workflow customization and simple addition of new features as well as the expansion to other domains. Availability and implementation The code and documentation are available at https://github.com/maxplanck-ie/parkour Contact [email protected]


bioRxiv | 2018

Ultra-parallel ChIP-seq by barcoding of intact nuclei

Laura Arrigoni; Hoor Al-Hasani; Fidel Ramírez; Ilaria Panzeri; Devon P. Ryan; Diana Santacruz; Nadia Kress; Andrew Pospisilik; Ulrike Boenisch; Thomas Manke

Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is an invaluable tool for mapping chromatin-associated proteins. However, sample preparation is still a largely individual and labor-intensive process that hinders assay throughput and comparability. Here, we present a novel method for ultra-parallelized high-throughput ChIP-seq that addresses the aforementioned problems. The method, called RELACS (Restriction Enzyme-based Labeling of Chromatin in Situ), employs barcoding of chromatin within intact nuclei extracted from different sources (e.g. tissues, treatments, time points). Barcoded nuclei are pooled and processed within the same ChIP, for maximal comparability and significant workload reduction. The choice of user-friendly, straightforward, enzymatic steps for chromatin fragmentation and barcoding makes RELACS particularly suitable for implementation large-scale clinical studies and scarce samples. RELACS can generate ChIP-seq libraries from hundreds of samples within three days and with less than 1000 cells per sample.

Collaboration


Dive into the Laura Arrigoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge