Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura B. Creemers is active.

Publication


Featured researches published by Laura B. Creemers.


Biomaterials | 2009

Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration

Diederik H. R. Kempen; Lichun Lu; Andras Heijink; Theresa E. Hefferan; Laura B. Creemers; Avudaiappan Maran; Michael J. Yaszemski; W.J.A. Dhert

Bone regeneration is a coordinated cascade of events regulated by several cytokines and growth factors. Angiogenic growth factors are predominantly expressed during the early phases for re-establishment of the vascularity, whereas osteogenic growth factors are continuously expressed during bone formation and remodeling. Since vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are key regulators of angiogenesis and osteogenesis during bone regeneration, the aim of this study was to investigate if their sequential release could enhance BMP-2-induced bone formation. A composite consisting of poly(lactic-co-glycolic acid) microspheres loaded with BMP-2 embedded in a poly(propylene) scaffold surrounded by a gelatin hydrogel loaded with VEGF was used for the sequential release of the growth factors. Empty composites or composites loaded with VEGF and/or BMP-2 were implanted ectopically and orthotopically in Sprague-Dawley rats (n=9). Following implantation, the local release profiles were determined by measuring the activity of (125)I-labeled growth factors using scintillation probes. After 8 weeks blood vessel and bone formation were analyzed using microangiography, microCT and histology. The scaffolds exhibited a large initial burst release of VEGF within the first 3 days and a sustained release of BMP-2 over the full 56-day implantation period. Although VEGF did not induce bone formation, it did increase the formation of the supportive vascular network (p=0.03) in ectopic implants. In combination with local sustained BMP-2 release, VEGF significantly enhanced ectopic bone formation compared to BMP-2 alone (p=0.008). In the orthotopic defects, no effect of VEGF on vascularisation was found, nor was bone formation higher by the combination of growth factors, compared to BMP-2 alone. This study demonstrates that a sequential angiogenic and osteogenic growth factor release may be beneficial for the enhancement of bone regeneration.


Histochemical Journal | 1996

Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling.

Vincent Everts; Erwin van der Zee; Laura B. Creemers; Wouter Beertsen

SummaryCollagens of most connective tissues are subject to continuous remodelling and turnover, a phenomenon which occurs under both physiological and pathological conditions. Degradation of these proteins involves participation of a variety of proteolytic enzymes including members of the following proteinase classes: matrix metalloproteinases (e.g. collagenase, gelatinase and stromelysin), cysteine proteinases (e.g. cathepsin B and L) and serine proteinases (e.g. plasmin and plasminogen activator). Convincing evidence is available indicating a pivotal role for matrix metalloproteinases, in particular collagenase, in the degradation of collagen under conditions of rapid remodelling, e.g. inflammation and involution of the uterus. Under steady state conditions, such as during turnover of soft connective tissues, involvement of collagenase has yet to be demonstrated. Under these circumstances collagen degradation is likely to take place particularly within the lysosomal apparatus after phagocytosis of the fibrils. We propose that this process involves the following steps: (i) recognition of the fibril by membranebound receptors (integrins?), (ii) segregation of the fibril, (iii) partial digestion of the fibril and/or its surrounding noncollagenous proteins by matrix metalloproteinases (possibly gelatinase), and finally (iv) lysosomal digestion by cysteine proteinases, such as cathepsin B and/or L. Modulation of this pathway is carried out under the influence of growth factors and cytokines, including transforming growth factor β and interleukin 1α.


Biomaterials | 2008

Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering

Diederik H. R. Kempen; Lichun Lu; Teresa E. Hefferan; Laura B. Creemers; Avudaiappan Maran; Kelly L. Classic; Wouter J.A. Dhert; Michael J. Yaszemski

In this study, we investigated the in vitro and in vivo biological activities of bone morphogenetic protein 2 (BMP-2) released from four sustained delivery vehicles for bone regeneration. BMP-2 was incorporated into (1) a gelatin hydrogel, (2) poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a gelatin hydrogel, (3) microspheres embedded in a poly(propylene fumarate) (PPF) scaffold and (4) microspheres embedded in a PPF scaffold surrounded by a gelatin hydrogel. A fraction of the incorporated BMP-2 was radiolabeled with (125)I to determine its in vitro and in vivo release profiles. The release and bioactivity of BMP-2 were tested weekly over a period of 12 weeks in preosteoblast W20-17 cell line culture and in a rat subcutaneous implantation model. Outcome parameters for in vitro and in vivo bioactivities of the released BMP-2 were alkaline phosphatase (AP) induction and bone formation, respectively. The four implant types showed different in vitro release profiles over the 12-week period, which changed significantly upon implantation. The AP induction by BMP-2 released from gelatin implants showed a loss in bioactivity after 6 weeks in culture, while the BMP-2 released from the other implants continued to show bioactivity over the full 12-week period. Micro-CT and histological analysis of the delivery vehicles after 6 weeks of implantation showed significantly more bone in the microsphere/PPF scaffold composites (Implant 3, p<0.02). After 12 weeks, the amount of newly formed bone in the microsphere/PPF scaffolds remained significantly higher than that in the gelatin and microsphere/gelatin hydrogels (p<0.001), however, there was no statistical difference compared to the microsphere/PPF/gelatin composite. Overall, the results from this study show that BMP-2 could be incorporated into various bone tissue engineering composites for sustained release over a prolonged period of time with retention of bioactivity.


Biology of Reproduction | 2003

Proliferation and Differentiation of Bovine Type A Spermatogonia During Long-Term Culture

F. Izadyar; Krista den Ouden; Laura B. Creemers; George Posthuma; Martti Parvinen; Dirk G. de Rooij

Abstract The present study was aimed at developing a method for long-term culture of bovine type A spermatogonia. Testes from 5-mo-old calves were used, and pure populations of type A spermatogonia were isolated. Cells were cultured in minimal essential medium (MEM) or KSOM (potassium-rich medium prepared according to the simplex optimization method) and different concentrations of fetal calf serum (FCS) for 2–4 wk at 32°C or 37°C. Culture in MEM resulted in more viable cells and more proliferation than culture in KSOM, and better results were obtained at 37°C than at 32°C. After 1 wk of culture in the absence of serum, only 20% of the cells were alive. However, in the presence of 2.5% FCS, approximately 80% of cells were alive and proliferating. Higher concentrations of FCS only enhanced numbers of somatic cells. In long-term culture, spermatogonia continued to proliferate, and eventually, type A spermatogonial colonies were formed. The majority of colonies consisted mostly of groups of cells connected by intercellular bridges. Most of the cells in these colonies underwent differentiation because they were c-kit positive, and ultimately, cells with morphological and molecular characteristics of spermatocytes and spermatids were formed. Occasionally, large round colonies consisting of single, c-kit-negative, type A spermatogonia (presumably spermatogonial stem cells) were observed. For the first time to our knowledge, a method has been developed to allow proliferation and differentiation of highly purified type A spermatogonia, including spermatogonial stem cells during long-term culture.


Matrix Biology | 1998

Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue

Laura B. Creemers; Ineke D. C. Jansen; Andrew J. P. Docherty; John J. Reynolds; Wouter Beertsen; Vincent Everts

The degradation of soft connective tissue collagen is considered to depend on the activity of various proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases and cysteine proteinases. In the present study, we investigated the contribution of these enzymes to this process. Using a general inhibitor of MMPs (SC44463), collagen degradation was strongly inhibited, by about 40% after 24 h and up to 80% after 72 h of culturing. Blockage of cysteine proteinase activity (with leupeptin or E-64) reduced breakdown at these time intervals by 50% and 20%, respectively. Given the abundant presence of gelatinases--in particular gelatinase A (MMP-2)--in the tissue, the effect of an inhibitor selective for gelatinases (CT1166) was studied. Gelatinase inhibition resulted in a dose-dependent decrease of collagen breakdown up to 90% after 48 h. The ability of gelatinase A to degrade collagens was demonstrated by the induction of breakdown in devitalized explants by addition of activated gelatinase A, or by activation of endogenous enzyme with 4-aminophenylmercuric acetate. This latter effect was not found with plasmin, an activator of MMPs other than gelatinase A. Finally, the relevance of gelatinase A to the in vivo degradation of soft connective tissue collagen was implicated by the significant correlation found between its activity and the collagen turnover rates of four soft connective tissues (tooth pulp, periodontal ligament, molar gingiva and skin). We conclude that collagen degradation in soft connective tissue is mediated by MMPs and to a lesser extent by cysteine proteinases. Our data are the first to attach a key role to gelatinase A in this process.


Osteoarthritis and Cartilage | 2010

Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration

J.P.H.J. Rutges; Laura B. Creemers; Wouter J.A. Dhert; S. Milz; Daisuke Sakai; J. Mochida; Mauro Alini; Sibylle Grad

OBJECTIVE Regardless of recent progress in the elucidation of intervertebral disc (IVD) degeneration, the basic molecular characteristics that define a healthy human IVD are largely unknown. Although work in different animal species revealed distinct molecules that might be used as characteristic markers for IVD or specifically nucleus pulposus (NP) cells, the validity of these markers for characterization of human IVD cells remains unknown. DESIGN Eleven potential marker molecules were characterized with respect to their occurrence in human IVD cells. Gene expression levels of NP were compared with annulus fibrosus (AF) and articular cartilage (AC) cells, and potential correlations with aging were assessed. RESULTS Higher mRNA levels of cytokeratin-19 (KRT19) and of neural cell adhesion molecule-1 were noted in NP compared to AF and AC cells. Compared to NP cytokeratin-18 expression was lower in AC, and alpha-2-macroglobulin and desmocollin-2 lower in AF. Cartilage oligomeric matrix protein (COMP) and glypican-3 expression was higher in AF, while COMP, matrix gla protein (MGP) and pleiotrophin expression was higher in AC cells. Furthermore, an age-related decrease in KRT19 and increase in MGP expression were observed in NP cells. The age-dependent expression pattern of KRT19 was confirmed by immunohistochemistry, showing the most prominent KRT19 immunoreaction in the notochordal-like cells in juvenile NP, whereas MGP immunoreactivity was not restricted to NP cells and was found in all age groups. CONCLUSIONS The gene expression of KRT19 has the potential to characterize human NP cells, whereas MGP cannot serve as a characteristic marker. KRT19 protein expression was only detected in NP cells of donors younger than 54 years.


Spine | 2012

The Dog as an Animal Model for Intervertebral Disc Degeneration

Niklas Bergknut; J.P.H.J. Rutges; Hendrik-Jan C. Kranenburg; Lucas A. Smolders; Ragnvi Hagman; Hendrik-Jan Smidt; Anne-Sofie Lagerstedt; Louis C. Penning; George Voorhout; H.A.W. Hazewinkel; Guy C. M. Grinwis; Laura B. Creemers; Björn P. Meij; Wouter J.A. Dhert

Study Design. Prospective observational and analytic study. Objective. To investigate whether spontaneous intervertebral disc degeneration (IVDD) occurring in both chondrodystrophic (CD) and nonchondrodystrophic dogs (NCD) can be used as a valid translational model for human IVDD research. Summary of Background Data. Different animal models are used in IVDD research, but in most of these models IVDD is induced manually or chemically rather than occurring spontaneously. Methods. A total of 184 intervertebral discs (IVDs) from 19 dogs of different breeds were used. The extent of IVDD was evaluated by macroscopic grading, histopathology, glycosaminoglycan content, and matrix metalloproteinase 2 activity. Canine data were compared with human IVD data acquired in this study or from the literature. Results. Gross pathology of IVDD in both dog types (CD and NCD) and humans showed many similarities, but the cartilaginous endplates were significantly thicker and the subchondral cortices significantly thinner in humans than in dogs. Notochordal cells were still present in the IVDs of adult NCD but were not seen in the CD breeds or in humans. Signs of degeneration were seen in young dogs of CD breeds (<1 year of age), whereas this was only seen in older dogs of NCD breeds (5–7 years of age). The relative glycosaminoglycan content and metalloproteinase 2 activity in canine IVDD were similar to those in humans: metalloproteinase 2 activity increased and glycosaminoglycan content decreased with increasing severity of IVDD. Conclusion. IVDD is similar in humans and dogs. Both CD and NCD breeds may therefore serve as models of spontaneous IVDD for human research. However, as with all animal models, it is important to recognize interspecies differences and, indeed, the intraspecies differences between CD and NCD breeds (early vs. late onset of IVDD, respectively) to develop an optimal canine model of human IVDD.


Biology of Reproduction | 2002

Transplantation of Germ Cells from Glial Cell Line-Derived Neurotrophic Factor-Overexpressing Mice to Host Testes Depleted of Endogenous Spermatogenesis by Fractionated Irradiation

Laura B. Creemers; Xiaojuan Meng; K. den Ouden; A.M.M. van Pelt; F. Izadyar; M. Santoro; Hannu Sariola; Dirk G. de Rooij

Abstract With a novel method of eliminating spermatogenesis in host animals, male germ cells isolated from mice with targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) were transplanted to evaluate their ability to reproduce the phenotype previously found in the transgenic animals. Successful depletion of endogenous spermatogenesis was achieved using fractionated ionizing irradiation. A dose of 1.5 Gy followed by a dose of 12 Gy after 24 h reduced the percentage of tubule cross-sections displaying endogenous spermatogenesis to approximately 3% and 10% as evidenced by histologic evaluation of testes at 12 and 21 wk, respectively, after irradiation. At this dose, no apparent harmful side effects were noted in the animals. Upon transplantation, GDNF-overexpressing germ cells were found to be able to repopulate the irradiated testes and to form clusters of spermatogonia-like cells resembling those found in the overexpressing donor mice. The cluster cells in transplanted host testes expressed human GDNF, as had been shown previously for clusters in donor animals, and both were strongly positive for the tyrosine kinase receptor Ret. Thus, we devised an efficient method for depleting the seminiferous epithelium of host mice without appreciable adverse effects. In these host mice, GDNF-overexpressing cells reproduced the aberrant phenotype found in the donor transgenic mice.


Tissue Engineering Part B-reviews | 2010

Growth factor interactions in bone regeneration

Diederik H. R. Kempen; Laura B. Creemers; Jacqueline Alblas; Lichun Lu; Abraham J. Verbout; Michael J. Yaszemski; Wouter J.A. Dhert

Bone regeneration is a complex process regulated by a large number of bioactive molecules. Many growth factors and cytokines involved in the natural process of bone healing have been identified and tested as potential therapeutic candidates to enhance the regeneration process. Although many of these studies show an enhancement of the bone regeneration process by a single drug therapy, in vivo bone regeneration is the result of a complex interplay between the applied growth factor and various endogenous produced growth factors. To investigate these growth factor interactions, various studies have investigated the effect of growth factor combinations on bone regeneration. This review provides an overview of the growth factor and cytokine combinations tested in translational bone regeneration studies and shows that their interaction may result in an enhancement or inhibition of bone formation.


Cartilage | 2011

International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials.

Caroline D. Hoemann; Rita A. Kandel; Sally Roberts; Daniël B.F. Saris; Laura B. Creemers; Pierre Mainil-Varlet; Stéphane Méthot; Anthony P. Hollander; Michael D. Buschmann

Cartilage repair strategies aim to resurface a lesion with osteochondral tissue resembling native cartilage, but a variety of repair tissues are usually observed. Histology is an important structural outcome that could serve as an interim measure of efficacy in randomized controlled clinical studies. The purpose of this article is to propose guidelines for standardized histoprocessing and unbiased evaluation of animal tissues and human biopsies. Methods were compiled from a literature review, and illustrative data were added. In animal models, treatments are usually administered to acute defects created in healthy tissues, and the entire joint can be analyzed at multiple postoperative time points. In human clinical therapy, treatments are applied to developed lesions, and biopsies are obtained, usually from a subset of patients, at a specific time point. In striving to standardize evaluation of structural endpoints in cartilage repair studies, 5 variables should be controlled: 1) location of biopsy/sample section, 2) timing of biopsy/sample recovery, 3) histoprocessing, 4) staining, and 5) blinded evaluation with a proper control group. Histological scores, quantitative histomorphometry of repair tissue thickness, percentage of tissue staining for collagens and glycosaminoglycan, polarized light microscopy for collagen fibril organization, and subchondral bone integration/structure are all relevant outcome measures that can be collected and used to assess the efficacy of novel therapeutics. Standardized histology methods could improve statistical analyses, help interpret and validate noninvasive imaging outcomes, and permit cross-comparison between studies. Currently, there are no suitable substitutes for histology in evaluating repair tissue quality and cartilaginous character.

Collaboration


Dive into the Laura B. Creemers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keita Ito

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.B. Saris

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge