Laura B. Jeffords
Medical University of South Carolina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura B. Jeffords.
The Annals of Thoracic Surgery | 2008
Rupak Mukherjee; Juozas A. Zavadzkas; Stuart M. Saunders; Julie E. McLean; Laura B. Jeffords; Christy Beck; Robert E. Stroud; Allyson M. Leone; Christine N. Koval; William T Rivers; Shubhayu Basu; Alexander Sheehy; Gene Michal; Francis G. Spinale
BACKGROUND Left ventricular (LV) remodeling after myocardial infarction (MI) commonly causes infarct expansion (IE). This study sought to interrupt IE through microinjections of a biocompatible composite material into the post-MI myocardium. METHODS MI was created in 21 pigs (coronary ligation). Radiopaque markers (2-mm diameter) were placed for IE (fluoroscopy). Pigs were randomized for microinjections (25 injections; 2- x 2-cm array; 200 microL/injection) at 7 days post-MI of a fibrin-alginate composite (Fib-Alg; fibrinogen, fibronectin, factor XIII, gelatin-grafted alginate, thrombin; n = 11) or saline (n = 10). RESULTS At 7 days after injection (14 days post-MI), LV posterior wall thickness was higher in the Fib-Alg group than in the saline group (1.07 +/- 0.11 vs 0.69 +/- 0.07 cm, respectively, p = 0.002). At 28 days post-MI, the area within the markers (IE) increased from baseline (1 cm2) in the saline (1.71 +/- 0.13 cm2, p = 0.010) and Fib-Alg groups (1.44 +/- 0.23 cm2, p < 0.001). However, the change in IE at 21 and 28 days post-MI was reduced in the Fib-Alg group (p=0.043 and p=0.019). Total collagen content within the MI region was similar in the saline and Fib-Alg groups (12.8 +/- 1.7 and 11.6 +/- 1.5 microg/mg, respectively, p = NS). However, extractable collagen, indicative of solubility, was lower in the Fib-Alg group than the saline group (59.1 +/- 3.5 vs 71.0 +/- 6.1 microg/mL, p = 0.020). CONCLUSIONS Targeted myocardial microinjection of the biocomposite attenuated the post-MI decrease in LV wall thickness and infarct expansion. Thus, intraoperative microinjections of biocompatible material may provide a novel approach for interrupting post-MI LV remodeling.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Santhosh K. Mani; Sundaravadivel Balasubramanian; Juozas A. Zavadzkas; Laura B. Jeffords; William T Rivers; Michael R. Zile; Rupak Mukherjee; Francis G. Spinale; Dhandapani Kuppuswamy
Cardiac pathology, such as myocardial infarction (MI), activates intracellular proteases that often trigger programmed cell death and contribute to maladaptive changes in myocardial structure and function. To test whether inhibition of calpain, a Ca(2+)-dependent cysteine protease, would prevent these changes, we used a mouse MI model. Calpeptin, an aldehydic inhibitor of calpain, was intravenously administered at 0.5 mg/kg body wt before MI induction and then at the same dose subcutaneously once per day. Both calpeptin-treated (n = 6) and untreated (n = 6) MI mice were used to study changes in myocardial structure and function after 4 days of MI, where end-diastolic volume (EDV) and left ventricular ejection fraction (EF) were measured by echocardiography. Calpain activation and programmed cell death were measured by immunohistochemistry, Western blotting, and TdT-mediated dUTP nick-end labeling (TUNEL). In MI mice, calpeptin treatment resulted in a significant improvement in EF [EF decreased from 67 + or - 2% pre-MI to 30 + or - 4% with MI only vs. 41 + or - 2% with MI + calpeptin] and attenuated the increase in EDV [EDV increased from 42 + or - 2 microl pre-MI to 73 + or - 4 microl with MI only vs. 55 + or - 4 microl with MI + calpeptin]. Furthermore, calpeptin treatment resulted in marked reduction in calpain- and caspase-3-associated changes and TUNEL staining. These studies indicate that calpain contributes to MI-induced alterations in myocardial structure and function and that it could be a potential therapeutic target in treating MI patients.
Circulation-heart Failure | 2009
Francis G. Spinale; G. Patricia Escobar; Rupak Mukherjee; Juozas A. Zavadzkas; Stuart M. Saunders; Laura B. Jeffords; Allyson M. Leone; Christy Beck; Shenikqua Bouges; Robert E. Stroud
Background—The direct consequences of a persistently increased myocardial expression of the unique matrix metalloproteinase (MMP) membrane type-1 (MT1-MMP) on myocardial remodeling remained unexplored. Methods and Results—Cardiac-restricted MT1-MMPexp was constructed in mice using the full-length human MT1-MMP gene ligated to the myosin heavy chain promoter, which yielded approximately a 200% increase in MT1-MMP when compared with age/strain-matched wild-type (WT) mice. Left ventricular (LV) function and geometry was assessed by echocardiography in 3-month (“young”) WT (n=32) and MT1-MMPexp (n=20) mice and compared with 14-month (“middle-aged”) WT (n=58) and MT1-MMPexp (n=35) mice. LV end-diastolic volume was similar between the WT and MT1-MMPexp young groups, as was LV ejection fraction. In the middle-aged WT mice, LV end-diastolic volume and ejection fraction was similar to young WT mice. However, in the MT1-MMPexp middle-aged mice, LV end-diastolic volume was ≈43% higher and LV ejection fraction 40% lower (both P<0.05). Moreover, in the middle-aged MT1-MMPexp mice, myocardial fibrillar collagen increased by nearly 2-fold and was associated with ≈3-fold increase in the processing of the profibrotic molecule, latency-associated transforming growth factor binding protein. In a second study, 14-day survival after myocardial infarction was significantly lower in middle-aged MT1-MMPexp mice. Conclusions—Persistently increased myocardial MT1-MMP expression, in and of itself, caused LV remodeling, myocardial fibrosis, dysfunction, and reduced survival after myocardial injury. These findings suggest that MT1-MMP plays a mechanistic role in adverse remodeling within the myocardium.
Circulation-heart Failure | 2009
Francis G. Spinale; G. Patricia Escobar; Rupak Mukherjee; Juozas A. Zavadzkas; Stuart M. Saunders; Laura B. Jeffords; Allyson M. Leone; Christy Beck; Shenikqua Bouges; Robert E. Stroud
Background—The direct consequences of a persistently increased myocardial expression of the unique matrix metalloproteinase (MMP) membrane type-1 (MT1-MMP) on myocardial remodeling remained unexplored. Methods and Results—Cardiac-restricted MT1-MMPexp was constructed in mice using the full-length human MT1-MMP gene ligated to the myosin heavy chain promoter, which yielded approximately a 200% increase in MT1-MMP when compared with age/strain-matched wild-type (WT) mice. Left ventricular (LV) function and geometry was assessed by echocardiography in 3-month (“young”) WT (n=32) and MT1-MMPexp (n=20) mice and compared with 14-month (“middle-aged”) WT (n=58) and MT1-MMPexp (n=35) mice. LV end-diastolic volume was similar between the WT and MT1-MMPexp young groups, as was LV ejection fraction. In the middle-aged WT mice, LV end-diastolic volume and ejection fraction was similar to young WT mice. However, in the MT1-MMPexp middle-aged mice, LV end-diastolic volume was ≈43% higher and LV ejection fraction 40% lower (both P<0.05). Moreover, in the middle-aged MT1-MMPexp mice, myocardial fibrillar collagen increased by nearly 2-fold and was associated with ≈3-fold increase in the processing of the profibrotic molecule, latency-associated transforming growth factor binding protein. In a second study, 14-day survival after myocardial infarction was significantly lower in middle-aged MT1-MMPexp mice. Conclusions—Persistently increased myocardial MT1-MMP expression, in and of itself, caused LV remodeling, myocardial fibrosis, dysfunction, and reduced survival after myocardial injury. These findings suggest that MT1-MMP plays a mechanistic role in adverse remodeling within the myocardium.
The Annals of Thoracic Surgery | 2008
Matthew D. McEvoy; Anna-Greta Taylor; Juozas A. Zavadzkas; Ira M. Mains; Rachael L. Ford; Robert E. Stroud; Laura B. Jeffords; Christy Beck; Scott Reeves; Francis G. Spinale
BACKGROUND Cardiac surgery can result in left ventricular ischemia and reperfusion (I/R), the release of cytokines such as tumor necrosis factor, and oxidative stress with release of myeloperoxidase. Although aprotinin has been used in cardiac surgery, the likely multiple effects of this serine protease inhibitor limit clinical utility. This study tested the hypothesis that different aprotinin doses cause divergent effects on left ventricular contractility, cytokine release, and oxidative stress in the context of I/R. METHODS Left ventricular I/R (30 minutes I, 60 minutes R) was induced in mice, and left ventricular contractility (maximal end-systolic elastance) determined. Mice were randomly allocated to 2 x 10(4) kallikrein inhibitory units (KIU)/kg aprotinin (n = 11), 4 x 10(4) KIU/kg aprotinin (n = 10), and vehicle (saline, n = 10). Based upon a fluorogenic assay, aprotinin doses of 2 and 4 x 10(4) KIU/kg resulted in plasma concentrations similar to those of the half and full Hammersmith doses, respectively. RESULTS After I/R, maximal end-systolic elastance fell by more than 40% from baseline (p < 0.05), and this effect was attenuated by 2 x 10(4) KIU/kg but not 4 x 10(4) KIU/kg aprotinin. Tumor necrosis factor increased by more than 60% from control (p < 0.05) with I/R, but was reduced with 4 x 10(4) KIU/kg aprotinin. Myeloperoxidase increased with I/R, and was reduced to the greatest degree by 2 x 10(4) KIU/kg aprotinin. CONCLUSIONS Aprotinin influences left ventricular contractility, cytokine release, and oxidative stress, which are dose dependent. These results provide mechanistic evidence that multiple pathways are differentially affected by aprotinin in a context relevant to cardiac surgery.
Circulation-heart Failure | 2009
Francis G. Spinale; G. Patricia Escobar; Rupak Mukherjee; Juozas A. Zavadzkas; Stuart M. Saunders; Laura B. Jeffords; Allyson M. Leone; Christy Beck; Shenikqua Bouges; Robert E. Stroud
Background—The direct consequences of a persistently increased myocardial expression of the unique matrix metalloproteinase (MMP) membrane type-1 (MT1-MMP) on myocardial remodeling remained unexplored. Methods and Results—Cardiac-restricted MT1-MMPexp was constructed in mice using the full-length human MT1-MMP gene ligated to the myosin heavy chain promoter, which yielded approximately a 200% increase in MT1-MMP when compared with age/strain-matched wild-type (WT) mice. Left ventricular (LV) function and geometry was assessed by echocardiography in 3-month (“young”) WT (n=32) and MT1-MMPexp (n=20) mice and compared with 14-month (“middle-aged”) WT (n=58) and MT1-MMPexp (n=35) mice. LV end-diastolic volume was similar between the WT and MT1-MMPexp young groups, as was LV ejection fraction. In the middle-aged WT mice, LV end-diastolic volume and ejection fraction was similar to young WT mice. However, in the MT1-MMPexp middle-aged mice, LV end-diastolic volume was ≈43% higher and LV ejection fraction 40% lower (both P<0.05). Moreover, in the middle-aged MT1-MMPexp mice, myocardial fibrillar collagen increased by nearly 2-fold and was associated with ≈3-fold increase in the processing of the profibrotic molecule, latency-associated transforming growth factor binding protein. In a second study, 14-day survival after myocardial infarction was significantly lower in middle-aged MT1-MMPexp mice. Conclusions—Persistently increased myocardial MT1-MMP expression, in and of itself, caused LV remodeling, myocardial fibrosis, dysfunction, and reduced survival after myocardial injury. These findings suggest that MT1-MMP plays a mechanistic role in adverse remodeling within the myocardium.
Circulation-heart Failure | 2009
Francis G. Spinale; G. Patricia Escobar; Rupak Mukherjee; Juozas A. Zavadzkas; Stuart M. Saunders; Laura B. Jeffords; Allyson M. Leone; Christy Beck; Shenikqua Bouges; Robert E. Stroud
Background—The direct consequences of a persistently increased myocardial expression of the unique matrix metalloproteinase (MMP) membrane type-1 (MT1-MMP) on myocardial remodeling remained unexplored. Methods and Results—Cardiac-restricted MT1-MMPexp was constructed in mice using the full-length human MT1-MMP gene ligated to the myosin heavy chain promoter, which yielded approximately a 200% increase in MT1-MMP when compared with age/strain-matched wild-type (WT) mice. Left ventricular (LV) function and geometry was assessed by echocardiography in 3-month (“young”) WT (n=32) and MT1-MMPexp (n=20) mice and compared with 14-month (“middle-aged”) WT (n=58) and MT1-MMPexp (n=35) mice. LV end-diastolic volume was similar between the WT and MT1-MMPexp young groups, as was LV ejection fraction. In the middle-aged WT mice, LV end-diastolic volume and ejection fraction was similar to young WT mice. However, in the MT1-MMPexp middle-aged mice, LV end-diastolic volume was ≈43% higher and LV ejection fraction 40% lower (both P<0.05). Moreover, in the middle-aged MT1-MMPexp mice, myocardial fibrillar collagen increased by nearly 2-fold and was associated with ≈3-fold increase in the processing of the profibrotic molecule, latency-associated transforming growth factor binding protein. In a second study, 14-day survival after myocardial infarction was significantly lower in middle-aged MT1-MMPexp mice. Conclusions—Persistently increased myocardial MT1-MMP expression, in and of itself, caused LV remodeling, myocardial fibrosis, dysfunction, and reduced survival after myocardial injury. These findings suggest that MT1-MMP plays a mechanistic role in adverse remodeling within the myocardium.
Archive | 2010
Francis G. Spinale; Lance P. Ford; Robert E. Stroud; Laura B. Jeffords; Christy Beck; Scott Reeves; Matthew D. McEvoy; Anna-Greta Taylor; Juozas A. Zavadzkas; Ira M. Mains
Circulation | 2008
Francis G. Spinale; G. P Escobar; Rupak Mukherjee; Juozas A. Zavadzkas; Stuart M. Saunders; Laura B. Jeffords; Allyson M. Leone; Christy Beck; Shenikqua Bouges; Robert E. Stroud
Circulation | 2006
Anne M. Deschamps; Juozas A. Zavadzkas; Julie E. McLean; Laura B. Jeffords; Stuart M. Saunders; Nina J Sheats; Christy Beck; Francis G. Spinale