Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura B. Kozell is active.

Publication


Featured researches published by Laura B. Kozell.


Journal of Pharmacology and Experimental Therapeutics | 2007

Evaluation of levodopa dose and magnitude of dopamine depletion as risk factors for levodopa-induced dyskinesia in a rat model of Parkinson's disease.

Daniel B. Putterman; Adam C. Munhall; Laura B. Kozell; John K. Belknap; Steven W. Johnson

Levodopa dose and severity of Parkinsons disease (PD) are recognized risk factors for levodopa-induced dyskinesia (LID) in humans. The purpose of the present study was to evaluate the ability of these variables to predict severity of LID in a rat model of PD. Varied concentrations of 6-hydroxy-dopamine were injected into the midbrain to produce wide ranges of dopamine depletion in striatum. Three weeks later, rats were given daily injections of levodopa (2–10 mg/kg i.p.) plus benserazide (12.5 mg/kg i.p.) for 15 days. Abnormal involuntary movements (AIMs) were measured for limb, axial, orolingual, and rotatory movements. Dose-response analysis for total AIM scores yielded a levodopa ED50 value of 3.2 mg/kg on treatment day 15. There were strong interrelated correlations between individual AIM categories (ρ > 0.7) and for each AIM category in regard to total AIM score (ρ > 0.7). In rats that received levodopa doses that were greater than the ED50, rates of amphetamine-induced rotation were significantly correlated with total AIM scores (ρ = 0.413). However, of those rotating >5 times/min, 34% had relatively low AIM scores (<8). Likewise, there was a significant correlation between percentages of tyrosine hydroxylase (TH) loss and total AIM scores (ρ = 0.388). However, in those rats that had >85% TH loss, 30% had AIM scores <8. Our results show that given an adequate dose and magnitude of striatal dopamine depletion, levodopa produces dyskinesia with a continuous spectrum of severity. Although levodopa dose and level of dopamine depletion are significant risk factors for LID, we conclude that other factors must contribute to LID susceptibility.


The Journal of Neuroscience | 2009

Mapping a Barbiturate Withdrawal Locus to a 0.44 Mb Interval and Analysis of a Novel Null Mutant Identify a Role for Kcnj9 (GIRK3) in Withdrawal from Pentobarbital, Zolpidem, and Ethanol

Laura B. Kozell; Nicole A.R. Walter; Lauren C. Milner; Kevin Wickman; Kari J. Buck

Here, we map a quantitative trait locus (QTL) with a large effect on predisposition to barbiturate (pentobarbital) withdrawal to a 0.44 Mb interval of mouse chromosome 1 syntenic with human 1q23.2. We report a detailed analysis of the genes within this interval and show that it contains 15 known and predicted genes, 12 of which demonstrate validated genotype-dependent transcript expression and/or nonsynonymous coding sequence variation that may underlie the influence of the QTL on withdrawal. These candidates are involved in diverse cellular functions including intracellular trafficking, potassium conductance and spatial buffering, and multimolecular complex dynamics, and indicate both established and novel aspects of neurobiological response to sedative-hypnotics. This work represents a substantial advancement toward identification of the gene(s) that underlie the phenotypic effects of the QTL. We identify Kcnj9 as a particularly promising candidate and report the development of a Kcnj9-null mutant model that exhibits significantly less severe withdrawal from pentobarbital as well as other sedative-hypnotics (zolpidem and ethanol) versus wild-type littermates. Reduced expression of Kcnj9, which encodes GIRK3 (Kir3.3), is associated with less severe sedative-hypnotic withdrawal. A multitude of QTLs for a variety of complex traits, including diverse responses to sedative-hypnotics, have been detected on distal chromosome 1 in mice, and as many as four QTLs on human chromosome 1q have been implicated in human studies of alcohol dependence. Thus, our results will be primary to additional efforts to identify genes involved in a wide variety of behavioral responses to sedative-hypnotics and may directly facilitate progress in human genetics.


Journal of Molecular Neuroscience | 2004

Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor.

Maria Torvinen; Laura B. Kozell; Kim A. Neve; Luigi F. Agnati; Kjell Fuxe

Functional interactions between adenosine A2A and dopamine D2 receptors have been demonstrated both at the D2 agonist-binding and second messenger levels. The present studies use a [3H]dopamine-binding assay as a sensitive measure of A2A receptor-mediated modulation of D2 receptors. Co-incubation with an A2A receptor agonist increased the Kd value of high-affinity [3H]dopamine-binding sites of the D2 receptor without changing their Bmax values in a cotransfected cell line. This interaction was shown to be subtype specific, as the A2A receptor agonist did not modulate the affinity of the D1 receptor for [3H]dopamine. The domains of the D2 receptor important for the A2A/D2 receptor interaction were studied with chimeric dopamine D2/D1 receptors. The results showed that the A2A receptor agonist still strongly reduced the affinity of a D2/D1 chimera with the sixth trans-membrane (TM) domain and third extracellular loop from the D1 receptor. However, the A2A receptor agonist was not able to modulate a D2/D1 chimeric receptor containing the fifth and sixth TM domains and the third intracellular and extracellular loops from the D1 receptor, indicating that the fifth TM domain and/or the third intracellular loop may be involved in the interaction between A2A and D2 receptors.


Alcohol | 2009

Differential activation of limbic circuitry associated with chronic ethanol withdrawal in DBA/2J and C57BL/6J mice

Gang Chen; Matthew T. Reilly; Laura B. Kozell; Robert Hitzemann; Kari J. Buck

Although no animal model exactly duplicates clinically defined alcoholism, models for specific factors, such as the withdrawal syndrome, are useful for identifying potential neural determinants of liability in humans. The well-documented difference in withdrawal severity following chronic ethanol exposure, between the DBA/2J and C57BL/6J mouse strains, provides an excellent starting point for dissecting the neural circuitry affecting predisposition to physical dependence on ethanol. To induce physical dependence, we used a paradigm in which mice were continuously exposed to ethanol vapor for 72h. Ethanol-exposed and air-exposed (control) mice received daily injections of pyrazole hydrochloride, an alcohol dehydrogenase inhibitor, to stabilize blood ethanol levels. Ethanol-dependent and air-exposed mice were killed 7h after removal from the inhalation chambers. This time point corresponds to the time of peak ethanol withdrawal severity. The brains were processed to assess neural activation associated with ethanol withdrawal indexed by c-Fos immunostaining. Ethanol-withdrawn DBA/2J mice showed significantly (P<.05) greater neural activation than ethanol-withdrawn C57BL/6J mice in the dentate gyrus, hippocampus CA3, lateral septum, basolateral and central nuclei of the amygdala, and prelimbic cortex. Taken together with results using an acute model, our data suggest that progression from acute ethanol withdrawal to the more severe withdrawal associated with physical dependence following chronic ethanol exposure involves recruitment of neurons in the hippocampal formation, amygdala, and prelimbic cortex. To our knowledge, these are the first studies to use c-Fos to identify the brain regions and neurocircuitry that distinguish between chronic and acute ethanol withdrawal severity using informative animal models.


Journal of Neurochemistry | 2002

Drug‐Induced Up‐Regulation of Dopamine D2 Receptors on Cultured Cells

Stephanie Starr; Laura B. Kozell; Kim A. Neve

Abstract: Ligand‐induced up‐regulation of recombinant dopamine D2 receptors was assessed using C6 glioma cells stably expressing the short (415‐amino‐acid; D2S) and long (444‐amino‐acid; D2L) forms of the receptor. Overnight treatment of C6‐D2L cells with N‐propylnorapomorphine (NPA) caused a time‐ and concentration‐dependent increase in the density of receptors, as assessed by the binding of radioligand to membranes prepared from the cells, with no change in the affinity of the receptors for the radioligand. The effect of 10 µM NPA was maximal after 10 h, at which time the density of D2L receptors was more than doubled. The agonists dopamine and quinpirole also increased the density of D2L receptors. The receptor up‐regulation was not specific for agonists, because the antagonists epidepride, sulpiride, and domperidone caused smaller (30–60%) increases in receptor density. Prolonged treatment with 10 µM NPA desensitized D2L receptors, as evidenced by a reduced ability of dopamine to inhibit adenylyl cyclase, whereas treatment with sulpiride was associated with an enhanced responsiveness to dopamine. The magnitude of NPA‐induced receptor up‐regulation in each of four clonal lines of C6‐D2L cells (mean increase, 80%) was greater than in all four lines of C6‐D2S cells (33%). Inactivation of pertussis toxin‐sensitive G proteins had no effect on the basal density of D2L receptors or on the NPA‐induced receptor up‐regulation. Treatment with 5 µg/ml of cycloheximide, on the other hand, decreased the basal density of receptors and attenuated, but did not prevent, the NPA‐induced increase. Chimeric D1/D2 receptors were used to identify structural determinants of dopamine receptor regulation. Treatment with the D1/D2 agonist NPA decreased the density of D1 and chimeric CH4 and CH3 receptors. The latter two receptors have D1 sequence from the amino‐terminus to the amino‐terminal end of transmembrane region (TM) VII and VI, respectively. CH2, with D1 sequence up to the amino‐terminal end of TM V, and thus the third cytoplasmic loop of the D2 receptor, was up‐regulated by NPA or the D2‐selective agonist quinpirole. Quinpirole treatment decreased the density of CH3 and had no effect on CH4 or D1 receptors. The different responses of CH2 and CH3 to agonist treatment suggest a role for TM V and the third cytoplasmic loop in the direction of receptor regulation.


Neuroscience | 2001

The effects of acute or repeated cocaine administration on nerve terminal glutamate within the rat mesolimbic system.

Laura B. Kozell; Charles K. Meshul

Cocaine administration alters glutamate function within several brain regions. Using quantitative electron microscopic immunocytochemistry, the present study investigated the effect of repeated intermittent cocaine (resulting in behavioral sensitization) or acute cocaine administration on the density of glutamate immunogold labeling within nerve terminals. Rats were treated daily with saline or cocaine for 7 days. Following a 14-day withdrawal animals were challenged with saline or cocaine. On the challenge day, most (75%) animals that received cocaine repeatedly showed a heightened locomotor response to cocaine compared to the first day of cocaine administration, and were considered behaviorally sensitized.Three days after the challenge, glutamate immunogold labeling was quantified in nerve terminals making asymmetrical synaptic contacts within the core and shell of the nucleus accumbens, ventral tegmental area and medial prefrontal cortex. There was a decrease in such labeling in the nucleus accumbens in the group receiving acute cocaine. Locomotor activity was positively correlated with glutamate immunolabeling within nerve terminals in the nucleus accumbens core only for the cocaine-sensitized group. Nerve terminal glutamate immunolabeling in the nucleus accumbens core, but not the shell, was increased in the non-sensitized compared to the cocaine-sensitized group. In the ventral tegmental area, glutamate immunolabeling was significantly higher in the cocaine-sensitized compared to the acute cocaine group. In the prefrontal cortex, there were no significant differences in glutamate immunogold labeling between treatment groups. This study indicates that acute cocaine administration significantly decreases nerve terminal glutamate immunoreactivity in the nucleus accumbens. We suggest that sensitization results in differential changes in the nucleus accumbens core versus the shell, and may alter presynaptic mechanisms regulating glutamate release or re-uptake in the core.


Neuroscience | 2007

Multiple conductances are modulated by 5-HT receptor subtypes in rat subthalamic nucleus neurons

Ke-Zhong Shen; Laura B. Kozell; Steven W. Johnson

Firing patterns of subthalamic nucleus (STN) neurons influence normal and abnormal movements. The STN expresses multiple 5-HT receptor subtypes that may regulate neuronal excitability. We used whole-cell patch-clamp recordings to characterize 5-HT receptor-mediated effects on membrane currents in STN neurons in rat brain slices. In 80 STN neurons under voltage-clamp (-70 mV), 5-HT (30 microM) evoked inward currents in 64%, outward currents in 17%, and biphasic currents in 19%. 5-HT-induced outward current was caused by an increased K(+) conductance (1.4+/-0.2 nS) and was blocked by the 5-HT(1A) antagonist WAY 100135. The 5-HT-evoked inward current, which was blocked by antagonists at 5-HT(2C) and/or 5-HT(4) receptors, had two types of current-voltage (I-V) relations. Currents associated with the type 1 I-V relation showed negative slope conductance at potentials <-110 mV and were occluded by Ba(2+). In contrast, the type 2 I-V relation appeared linear and had positive slope conductance (0.64+/-0.11 nS). Type 2 inward currents were Ba(2+)-insensitive, and the reversal potential of -19 mV suggests a mixed cation conductance. In STN neurons in which 5-HT evoked inward currents, 5-HT potentiated burst firing induced by N-methyl-d-aspartate (NMDA). But in neurons in which 5-HT evoked outward current, 5-HT slowed NMDA-dependent burst firing. We conclude that 5-HT receptor subtypes can differentially regulate firing pattern by modulating multiple conductances in STN neurons.


The Journal of Neuroscience | 2008

Involvement of the Limbic Basal Ganglia in Ethanol Withdrawal Convulsivity in Mice Is Influenced by a Chromosome 4 Locus

Gang Chen; Laura B. Kozell; Robert Hitzemann; Kari J. Buck

Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that sustains ethanol (alcohol) use/abuse and may contribute to relapse in alcoholics. Although no animal model duplicates alcoholism, models for specific factors, like the withdrawal syndrome, are useful for identifying potential genetic and neural determinants of liability in humans. We generated congenic mice that confirm a quantitative trait locus (QTL) on chromosome 4 with a large effect on predisposition to alcohol withdrawal. Using c-Fos expression as a high-resolution marker of neuronal activation, congenic mice demonstrated significantly less neuronal activity associated with ethanol withdrawal than background strain mice in the substantia nigra pars reticulata (SNr), subthalamic nucleus (STN), rostromedial lateral globus pallidus, and ventral pallidum. Notably, neuronal activation in subregions of the basal ganglia associated with limbic function was more intense than in subregions associated with sensorimotor function. Bilateral lesions of caudolateral SNr attenuated withdrawal severity after acute and repeated ethanol exposures, whereas rostrolateral SNr and STN lesions did not reduce ethanol withdrawal severity. Caudolateral SNr lesions did not affect pentylenetetrazol-enhanced convulsions. Our results suggest that this QTL impacts ethanol withdrawal via basal ganglia circuitry associated with limbic function and that the caudolateral SNr plays a critical role. These are the first analyses to elucidate circuitry by which a confirmed addiction-relevant QTL influences behavior. This mouse QTL is syntenic with human chromosome 9p. Given the growing body of evidence that a gene(s) on chromosome 9p influences alcoholism, our results can facilitate human research on alcohol dependence and withdrawal.


Addiction Biology | 2015

Novel MPDZ/MUPP1 transgenic and knockdown models confirm Mpdz's role in ethanol withdrawal and support its role in voluntary ethanol consumption

Lauren C. Milner; Renee L. Shirley; Laura B. Kozell; Nicole A.R. Walter; Lauren C. Kruse; Noboru H. Komiyama; Seth G. N. Grant; Kari J. Buck

Association studies implicate multiple PDZ domain protein (MPDZ/MUPP1) sequence and/or expression in risk for alcoholism in humans and ethanol withdrawal (EW) in mice, but confirmation has been hindered by the dearth of targeted genetic models. We report the creation of transgenic (MPDZ‐TG) and knockout heterozygote (Mpdz+/−) mice, with increased (2.9‐fold) and decreased (53%) target expression, respectively. Both models differ in EW compared with wild‐type littermates (P ≤ 0.03), providing compelling evidence for an inverse relationship between Mpdz expression and EW severity. Additionally, ethanol consumption is reduced up to 18% (P = 0.006) in Mpdz+/−, providing the first evidence implicating Mpdz in ethanol self‐administration.


Alcoholism: Clinical and Experimental Research | 2016

G Protein-Gated Inwardly Rectifying Potassium Channel Subunit 3 Knock-Out Mice Show Enhanced Ethanol Reward

Megan E. Tipps; Jonathan D. Raybuck; Laura B. Kozell; K. Matthew Lattal; Kari J. Buck

BACKGROUND G protein-gated inwardly rectifying potassium (GIRK) channels contribute to the effects of a number of drugs of abuse, including ethanol. However, the roles of individual subunits in the rewarding effects of ethanol are poorly understood. METHODS We compare conditioned place preference (CPP) in GIRK3 subunit knock-out (GIRK3(-/-)), heterozygote (GIRK3(+/-)), and wild-type (WT) mice. In addition, the development of locomotor tolerance/sensitization and the effects of EtOH intoxication on associative learning (fear conditioning) are also assessed. RESULTS Our data show significant EtOH CPP in GIRK3(-/-) and GIRK3(+/-) mice, but not in the WT littermates. In addition, we demonstrate that these effects are not due to differences in EtOH metabolism, the development of EtOH tolerance/sensitivity, or associative learning abilities. While there were no consistent genotype differences in the fear conditioning assay, our data do show a selective sensitization of the impairing effects of EtOH intoxication on contextual learning, but no effect on cued learning. CONCLUSIONS These findings suggest that GIRK3 plays a role in EtOH reward. Furthermore, the selectivity of this effect suggests that GIRK channels could be an effective therapeutic target for the prevention and/or treatment of alcoholism.

Collaboration


Dive into the Laura B. Kozell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge