Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Barrio-Real is active.

Publication


Featured researches published by Laura Barrio-Real.


Science Signaling | 2012

Rho GEFs and cancer: linking gene expression and metastatic dissemination.

Laura Barrio-Real; Marcelo G. Kazanietz

The guanine exchange factors Vav2 and Vav3 regulate gene expression to promote the metastasis of breast tumors to the lung. Guanine nucleotide exchange factors (GEFs) that promote GTP loading onto the guanosine triphosphatases (GTPases) Rho and Rac are prominent players in cancer progression. Recent studies have highlighted the relevance of several GEFs, including the phosphatidylinositol 3,4,5-trisphosphate Rac exchangers P-Rex1 and P-Rex2a, in breast tumorigenesis. New evidence suggests that the exchange factors Vav2 and Vav3 play synergistic roles in breast cancer by sustaining tumor growth, neoangiogenesis, and metastasis. The identification of a Vav-regulated transcriptome and Vav-related genes that control specific steps of metastatic dissemination of breast cancer cells to the lungs highlights the complexities of the signaling networks regulated by Rho/Rac GTPases and may lead to novel therapeutic targets.


Alcoholism: Clinical and Experimental Research | 2012

Cannabinoid Receptor 1 Gene is Associated with Alcohol Dependence

Miguel Marcos; Isabel Pastor; Cristina de la Calle; Laura Barrio-Real; Francisco-Javier Laso; Rogelio González-Sarmiento

BACKGROUND Alcohol dependence (AD) vulnerability is determined by a complex array of genetic factors. Given the potential role of endocannabinoid system in AD, polymorphisms within cannabinoid receptor 1 gene (CNR1) have been potentially associated with susceptibility to this disease. We thus aimed to examine the relationship between 3 allelic variants of CNR1 (rs6454674, rs1049353, and rs806368) and AD. METHODS Genotyping of the aforementioned polymorphisms was carried out by PCR in 298 male alcoholics (187 of them with AD) and 155 healthy controls. Single-marker, haplotype, and interaction analysis were performed to analyze the influence of CNR1 gene on AD susceptibility. RESULTS We found an association between CNR1 gene and AD after haplotype analysis. Alcoholic patients with TGT haplotype (corresponding to rs6454674-rs1049353-rs806368 polymorphisms in this order) were less prone to have AD (p = 0.017). Besides, alcoholics with a G/T substitution of the first marker (GGT haplotype) or a C/T substitution of the third marker (TGC haplotype) were more likely to develop AD (p = 0.006 and 0.004, respectively) and an interaction was found between the G allele of rs6454674 single nucleotide polymorphism (SNP) and the C allele of rs806368 SNP (p = 0.009). CONCLUSIONS Our findings support previously reported associations of CNR1 with dependence to alcohol and other substances and emphasizes the relevance of endocannabinoid system in AD.


Breast Cancer Research | 2014

Subtype-specific overexpression of the Rac-GEF P-REX1 in breast cancer is associated with promoter hypomethylation

Laura Barrio-Real; Lorena G. Benedetti; Nora Engel; Yaping Tu; Soonweng Cho; Saraswati Sukumar; Marcelo G. Kazanietz

IntroductionThe Rac-GEF P-REX1 is a key mediator of ErbB signaling in breast cancer recently implicated in mammary tumorigenesis and metastatic dissemination. Although P-REX1 is essentially undetectable in normal human mammary epithelial tissue, this Rac-GEF is markedly upregulated in human breast carcinomas, particularly of the luminal subtype. The mechanisms underlying P-REX1 upregulation in breast cancer are unknown. Toward the goal of dissecting the mechanistic basis of P-REX1 overexpression in breast cancer, in this study we focused on the analysis of methylation of the PREX1 gene promoter.MethodsTo determine the methylation status of the PREX1 promoter region, we used bisulfite genomic sequencing and pyrosequencing approaches. Re-expression studies in cell lines were carried out by treatment of breast cancer cells with the demethylating agent 5-aza-2′-deoxycitidine. PREX1 gene methylation in different human breast cancer subtypes was analyzed from the TCGA database.ResultsWe found that the human PREX1 gene promoter has a CpG island located between -1.2 kb and +1.4 kb, and that DNA methylation in this region inversely correlates with P-REX1 expression in human breast cancer cell lines. A comprehensive analysis of human breast cancer cell lines and tumors revealed significant hypomethylation of the PREX1 promoter in ER-positive, luminal subtype, whereas hypermethylation occurs in basal-like breast cancer. Treatment of normal MCF-10A or basal-like cancer cells, MDA-MB-231 with the demethylating agent 5-aza-2′-deoxycitidine in combination with the histone deacetylase inhibitor trichostatin A restores P-REX1 levels to those observed in luminal breast cancer cell lines, suggesting that aberrant expression of P-REX1 in luminal breast cancer is a consequence of PREX1 promoter demethylation. Unlike PREX1, the pro-metastatic Rho/Rac-GEF, VAV3, is not regulated by methylation. Notably, PREX1 gene promoter hypomethylation is a prognostic marker of poor patient survival.ConclusionsOur study identified for the first time gene promoter hypomethylation as a distinctive subtype-specific mechanism for controlling the expression of a key regulator of Rac-mediated motility and metastasis in breast cancer.


Journal of Biological Chemistry | 2014

Transcriptional Regulation of Oncogenic Protein Kinase Cϵ (PKCϵ) by STAT1 and Sp1 Proteins

HongBin Wang; Alvaro Gutierrez-Uzquiza; Rachana Garg; Laura Barrio-Real; Mahlet B. Abera; Cynthia Lopez-Haber; Cinthia Rosemblit; Huaisheng Lu; Martin C. Abba; Marcelo G. Kazanietz

Background: PKCϵ, a kinase widely implicated in tumorigenesis and metastasis, is overexpressed in many cancers. Results: Transcription factors Sp1 and STAT1 control the expression of PKCϵ in cancer cells. Conclusion: Up-regulation of PKCϵ is mediated by dysregulated transcriptional mechanisms. Significance: Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics. Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between −777 and −105 bp (region A) and −921 and −796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions −668/−659 and −269/−247 as well as STAT1 sites in positions −880/−869 and −793/−782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.


Molecular and Cellular Biology | 2016

Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α

Cynthia Lopez-Haber; Laura Barrio-Real; Victoria Casado-Medrano; Marcelo G. Kazanietz

ABSTRACT The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions −1376 to −1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4.


Oncotarget | 2016

A new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression

Victoria Casado-Medrano; Laura Barrio-Real; Ginesa García-Rostán; Matti Baumann; Oliver Rocks; María J. Caloca

β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression.


Journal of Investigative Medicine | 2013

Association of a novel polymorphism of the β2-chimaerin gene (CHN2) with smoking

Laura Barrio-Real; Miguel Barrueco; Rogelio González-Sarmiento; Maria J. Caloca

Objective The CHN2 gene encodes the β2-chimaerin, a Rac-specific guanosine-5′-triphosphatase activating protein with an important role in the establishment of functional brain circuitry by controlling axon pruning. Genetic studies suggest that the CHN2 gene harbors variants that contribute to addiction vulnerability and smoking behavior. To further evaluate the role of β2-chimaerin in nicotine addiction, we investigated the association of 3 individual polymorphisms of the CHN2 gene with smoking dependence. Methods Three hundred sixty-one healthy volunteers, 173 smokers (mean ± SD age, 60.4 ± 1.4 years) and 188 control subjects (mean ± SD age, 45.9 ± 1.4 years) were genotyped for 3 single-nucleotide polymorphisms in the CHN2 gene (rs3750103, rs12112301, and rs186911567). The association of these polymorphisms with smoking habits was analyzed. Results There was no significant association of polymorphisms rs12112301 and rs3750103 with smoking. However, there was a significant difference in the frequency of the rs186911567 polymorphism between the smokers and the controls (P = 0.003). Conclusions We report for the first time a significant association of the novel rs186911567 polymorphism of the CHN2 gene with smoking.


Small GTPases | 2018

The P-Rex1/Rac signaling pathway as a point of convergence for HER/ErbB receptor and GPCR responses

Marcelo G. Kazanietz; Laura Barrio-Real; Victoria Casado-Medrano; Martin J. Baker; Cynthia Lopez-Haber

ABSTRACT Guanine nucleotide Exchange Factors (GEFs) are responsible for mediating GDP/GTP exchange for specific small G proteins, such as Rac. There has been substantial evidence for the involvement of Rac-GEFs in the control of cancer cell migration and metastatic progression. We have previously established that the Rac-GEF P-Rex1 is a mediator of actin cytoskeleton rearrangements and cell motility in breast cancer cells downstream of HER/ErbB receptors and the G-Protein Coupled Receptor (GPCR) CXCR4. P-Rex1 is highly expressed in luminal A and B breast cancer compared to normal mammary tissue, whereas expression is very low in basal breast cancer, and its expression correlates with the appearance of metastasis in patients. Here, we discuss the involvement of P-Rex1 as an effector of oncogenic/metastatic receptors in breast cancer and underscore its relevance in the convergence of receptor-triggered motile signals. In addition, we provide an overview of our recent findings describing a cross-talk between HER/ErbB receptors and CXCR4, and how this impacts on the activation of P-Rex1/Rac1 signaling, as well as highlight challenges that lie ahead. We propose a model in which P-Rex1 acts as a crucial node for the integration of upstream inputs from HER/ErbB receptors and CXCR4 in luminal breast cancer cells.


Oncotarget | 2016

Characterization of a P-Rex1 gene signature in breast cancer cells

Laura Barrio-Real; Eva Wertheimer; Rachana Garg; Martin C. Abba; Marcelo G. Kazanietz

The Rac nucleotide Exchange Factor (Rac-GEF) P-Rex1 is highly expressed in breast cancer, specifically in the luminal subtype, and is an essential mediator of actin cytoskeleton reorganization and cell migratory responses induced by stimulation of ErbB and other tyrosine-kinase receptors. Heregulin (HRG), a growth factor highly expressed in mammary tumors, causes the activation of P-Rex1 and Rac1 in breast cancer cells via ErbB3, leading to a motile response. Since there is limited information about P-Rex1 downstream effectors, we carried out a microarray analysis to identify genes regulated by this Rac-GEF after stimulation of ErbB3 with HRG. In T-47D breast cancer cells, HRG treatment caused major changes in gene expression, including genes associated with motility, adhesion, invasiveness and metastasis. Silencing P-Rex1 expression from T-47D cells using RNAi altered the induction and repression of a subset of HRG-regulated genes, among them genes associated with extracellular matrix organization, migration, and chemotaxis. HRG induction of MMP10 (matrix metalloproteinase 10) was found to be highly sensitive both to P-Rex1 depletion and inhibition of Rac1 function by the GTPase Activating Protein (GAP) β2-chimaerin, suggesting the dependence of the P-Rex1/Rac1 pathway for the induction of genes critical for breast cancer invasiveness. Notably, there is a significant association in the expression of P-Rex1 and MMP10 in human luminal breast cancer, and their co-expression is indicative of poor prognosis.


Oncotarget | 2018

P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer

Laura Barrio-Real; Cynthia Lopez-Haber; Victoria Casado-Medrano; Alexander G. Goglia; Jared E. Toettcher; Maria J. Caloca; Marcelo G. Kazanietz

Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (P-Rex1) is a key mediator of growth factor-induced activation of Rac1, a small GTP-binding protein widely implicated in actin cytoskeleton reorganization. This Guanine nucleotide Exchange Factor (GEF) is overexpressed in human luminal breast cancer, and its expression associates with disease progression, metastatic dissemination and poor outcome. Despite the established contribution of P-Rex1 to Rac activation and cell locomotion, whether this Rac-GEF has any relevant role in mitogenesis has been a subject of controversy. To tackle the discrepancies among various reports, we carried out an exhaustive analysis of the potential involvement of P-Rex1 on the activation of the mitogenic Erk pathway. Using a range of luminal breast cancer cellular models, we unequivocally showed that silencing P-Rex1 (transiently, stably, using multiple siRNA sequences) had no effect on the phospho-Erk response upon stimulation with growth factors (EGF, heregulin, IGF-I) or a GPCR ligand (SDF-1). The lack of involvement of P-Rex1 in Erk activation was confirmed at the single cell level using a fluorescent biosensor of Erk kinase activity. Depletion of P-Rex1 from breast cancer cells failed to affect cell cycle progression, cyclin D1 induction, Akt activation and apoptotic responses. In addition, mammary-specific P-Rex1 transgenic mice (MMTV-P-Rex1) did not show any obvious hyperproliferative phenotype. Therefore, despite its crucial role in Rac1 activation and cell motility, P-Rex1 is dispensable for mitogenic or survival responses in breast cancer cells.

Collaboration


Dive into the Laura Barrio-Real's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria J. Caloca

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

HongBin Wang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Rachana Garg

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Martin C. Abba

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

María J. Caloca

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge