Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Calleros is active.

Publication


Featured researches published by Laura Calleros.


The FASEB Journal | 2011

Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells

Julia Carracedo; Ana Merino; Carolina Briceño; Sagrario Soriano; Paula Buendía; Laura Calleros; Mariano Rodriguez; Alejandro Martin-Malo; Pedro Aljama; Rafael Ramírez

Carbamylated low‐density lipoprotein (cLDL) plays a role in atherosclerosis. In this study we evaluate the effect of uremia on LDL carbamylation and the effect of cLDL and oxidized LDL (oxLDL;200 µg/ml) on number, function, and genomic stability of endothelial progenitor cells (EPCs) obtained from healthy volunteers. cLDL was generated after incubation of native LDL (nLDL) with uremic serum from patients with chronic kidney disease (CKD) stages 2–4. Oxidative stress was measured by flow cytometry and fluorescent microscopy, mitochondrial depolarization by flow cytometry, senescence by β‐galactosidase activity and telomere length, and DNA damage by phosphorylated histone H2AX (γH2AX). The percentage of cLDL by uremic serum was related to the severity of CKD. Compared with nLDL, cLDL induced an increase in oxidative stress (62±5 vs. 8±3%, P<0.001) and cells with mitochondrial depolarization (73±7 vs. 9±5%, P<0.001), and a decrease in EPC proliferation and angiogenesis. cLDL also induced accelerated senescence (73±16 vs. 12±9%, P≪ 0.001), which was associated with a decrease in the expression of γH2AX (62±9 vs. 5±3%, P<0.001). The degree of injury induced by cLDLwas comparable to that observed with oxLDL. This study supports the hypothesis that cLDL triggers genomic damage in EPCs, resulting in premature senescence. We can, therefore, hypothesize that EPCs injury by cLDL contributes to an increase in atherosclerotic disease in CKD.—Carracedo, J., Merino, A., Briceño, C., Soriano, S., Buendía, P., Calleros, L., Rodriguez, M., Martín‐Malo, A., Aljama, P., Ramírez, R. Carbamy‐lated low‐density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEBJ. 25, 1314–1322 (2011). www.fasebj.org


Cancer Letters | 2012

Dual inhibition of V600EBRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism

Irene Sánchez-Hernández; Pablo Baquero; Laura Calleros; Antonio Chiloeches

BRAF is a main oncogene in human melanomas. Here, we show that BRAF depletion by siRNA or inhibition of its activity by treatment with RAF inhibitor Sorafenib induces apoptosis in NPA melanoma cells expressing oncogenic (V600E)BRAF. This effect is mediated through a MEK/ERK-independent mechanism, since treatment with the MEK inhibitor U0126 does not exert any effect. Moreover, we demonstrate that inhibition of the PI3K/AKT/mTOR cascade alone does not increase apoptosis in these cells. However, the blockage of this pathway in cells lacking either BRAF expression or activity cooperates to induce higher levels of apoptosis than those achieved by inhibition of BRAF alone. Consistently, we demonstrate that abrogation of BRAF expression increases AKT and mTOR phosphorylation, suggesting the existence of a compensatory pro-survival mechanism after BRAF depletion. Together, our data provide a rationale for dual targeting of BRAF and PI3K/AKT/mTOR signalling to effectively control melanoma disease.


Apoptosis | 2006

RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion

Laura Calleros; Marina Lasa; Francisco J. Rodríguez-Álvarez; María J. Toro; Antonio Chiloeches

Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.


Inorganic Chemistry | 2014

Antitumoral, Antihypertensive, Antimicrobial, and Antioxidant Effects of an Octanuclear Copper(II)-Telmisartan Complex with an Hydrophobic Nanometer Hole

María S. Islas; Juan J. Martínez Medina; Libertad L. López Tévez; Teófilo Rojo; Luis Lezama; Mercedes Griera Merino; Laura Calleros; Maria Alicia Cortes; Manuel Rodriguez Puyol; Gustavo A. Echeverría; Oscar E. Piro; Evelina G. Ferrer; Patricia A.M. Williams

A new Cu(II) complex with the antihypertensive drug telmisartan, [Cu8Tlm16]·24H2O (CuTlm), was synthesized and characterized by elemental analysis and electronic, FTIR, Raman and electron paramagnetic resonance spectroscopy. The crystal structure (at 120 K) was solved by X-ray diffraction methods. The octanuclear complex is a hydrate of but otherwise isostructural to the previously reported [Cu8Tlm16] complex. [Cu8Tlm16]·24H2O crystallizes in the tetragonal P4/ncc space group with a = b = 47.335(1), c = 30.894(3) Å, Z = 4 molecules per unit cell giving a macrocyclic ring with a double helical structure. The Cu(II) ions are in a distorted bipyramidal environment with a somewhat twisted square basis, cis-coordinated at their core N2O2 basis to two carboxylate oxygen and two terminal benzimidazole nitrogen atoms. Cu8Tlm16 has a toroidal-like shape with a hydrophobic nanometer hole, and their crystal packing defines nanochannels that extend along the crystal c-axis. Several biological activities of the complex and the parent ligand were examined in vitro. The antioxidant measurements indicate that the complex behaves as a superoxide dismutase mimic with improved superoxide scavenger power as compared with native sartan. The capacity of telmisartan and its copper complex to expand human mesangial cells (previously contracted by angiotensin II treatment) is similar to each other. The antihypertensive effect of the compounds is attributed to the strongest binding affinity to angiotensin II type 1 receptor and not to the antioxidant effects. The cytotoxic activity of the complex and that of its components was determined against lung cancer cell line A549 and three prostate cancer cell lines (LNCaP, PC-3, and DU 145). The complex displays some inhibitory effect on the A549 line and a high viability decrease on the LNCaP (androgen-sensitive) line. From flow cytometric analysis, an apoptotic mechanism was established for the latter cell line. Telmisartan and CuTlm show antibacterial and antifungal activities in various strains, and CuTlm displays improved activity against the Staphylococcus aureus strain as compared with unbounded copper(II).


Apoptosis | 2012

Balance between apoptosis or survival induced by changes in extracellular-matrix composition in human mesangial cells: a key role for ILK-NFκB pathway

María del Nogal; Alicia Luengo; Gemma Olmos; Marina Lasa; Diego Rodriguez Puyol; Manuel Rodriguez Puyol; Laura Calleros

Renal fibrosis is the final outcome of many clinical conditions that lead to chronic renal failure, characterized by a progressive substitution of cellular elements by extracellular-matrix proteins, in particular collagen type I. The aim of this study was to identify the mechanisms responsible for human mesangial cell survival, conditioned by changes in extracellular-matrix composition. Our results indicate that collagen I induces apoptosis in cells but only after inactivation of the pro-survival factor NFκB by either the super-repressor IκBα or the PDTC inhibitor. Collagen I activates a death pathway, through ILK/GSK-3β-dependent Bim expression. Moreover, collagen I significantly increases NFκB-dependent transcription, IκBα degradation and p65/NFκB translocation to the nucleus; it activates β1 integrin and this is accompanied by increased activity of ILK which leads to AKT activation. Knockdown of ILK or AKT with small interfering RNA suppresses the increase in NFκB activity. NFκB mediates cell survival through the antiapoptotic protein Bcl-xL. Our data suggest that human mesangial cells exposed to abnormal collagen I are protected against apoptosis by a complex mechanism involving integrin β1/ILK/AKT-dependent NFκB activation with consequent Bcl-xL overexpression, that opposes a simultaneously activated ILK/GSK-3β-dependent Bim expression and this dual mechanism may play a role in the progression of glomerular dysfunction.


Free Radical Biology and Medicine | 2009

Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation

Abel Martin-Garrido; María del Carmen Boyano-Adánez; Matilde Alique; Laura Calleros; Isabel Serrano; Mercedes Griera; Diego Rodríguez-Puyol; Kathy K. Griendling; Manuel Rodríguez-Puyol

Hydrogen peroxide (H(2)O(2)) is implicated in the regulation of signaling pathways leading to changes in vascular smooth muscle function. Contractile effects produced by H(2)O(2) are due to the phosphorylation of myosin light chain kinase triggered by increases in intracellular calcium (Ca(2+)) from intracellular stores or influx of extracellular Ca(2+). One mechanism for mobilizing such stores involves the phosphoinositide pathway. Inositol 1,4,5-trisphosphate (IP(3)) mobilizes intracellular Ca(2+) by binding to a family of receptors (IP(3)Rs) on the endoplasmic-sarcoplasmic reticulum that act as ligand-gated Ca(2+) channels. IP(3)Rs can be rapidly ubiquitinated and degraded by the proteasome, causing a decrease in cellular IP(3)R content. In this study we show that IP(3)R(1) and IP(3)R(3) are down-regulated when vascular smooth muscle cells (VSMC) are stimulated by H(2)O(2), through an increase in proteasome activity. Moreover, we demonstrate that the decrease in IP(3)R by H(2)O(2) is accompanied by a reduction in calcium efflux induced by IP(3) in VSMC. Also, we observed that angiotensin II (ANGII) induces a decrease in IP(3)R by activation of NADPH oxidase and that preincubation with H(2)O(2) decreases ANGII-mediated calcium efflux and planar cell surface area in VSMC. The decreased IP(3) receptor content observed in cells was also found in aortic rings, which exhibited a decreased ANGII-dependent contraction after treatment with H(2)O(2). Altogether, these results suggest that H(2)O(2) mediates IP(3)R down-regulation via proteasome activity.


Free Radical Biology and Medicine | 2013

Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation.

Marta González-Ramos; S. de Frutos; Mercedes Griera; Alicia Luengo; Gemma Olmos; D. Rodriguez-Puyol; Laura Calleros; Manuel Rodríguez-Puyol

Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.


The Journal of Physiology | 2015

Effect of uraemia on endothelial cell damage is mediated by the integrin linked kinase pathway

Andrea García-Jerez; Alicia Luengo; Julia Carracedo; Rafael Ramírez-Chamond; Diego Rodríguez-Puyol; Manuel Rodríguez-Puyol; Laura Calleros

Patients with chronic kidney disease have a higher risk of developing cardiovascular diseases than the general population. Their vascular endothelium is dysfunctional, among other things, because it is permanently exposed to uraemic toxins, several of which have poor clearance by conventional dialysis. Recent studies have demonstrated the important role of integrin‐linked kinase (ILK) in the maintenance of endothelial integrity and in this study we investigate the involvement of ILK in the mechanism underlying vascular endothelial damage that occurs in uraemia. For the first time, we demonstrate the implication of ILK in the protection against endothelial cell damage (inhibition of proliferation, toxicity, oxidative stress and programed cell death) induced by uraemic serum from chronic kidney disease patients and uraemic toxins. This molecular mechanism may have clinical relevance because it highlights the importance of maintaining high levels of ILK activity to help preserve endothelial integrity, at least in early stages of chronic kidney disease.


Carcinogenesis | 2009

Oncogenic Ras, but not V600EB-RAF, protects from cholesterol depletion-induced apoptosis through the PI3K/AKT pathway in colorectal cancer cells

Laura Calleros; Irene Sánchez-Hernández; Pablo Baquero; María J. Toro; Antonio Chiloeches

Cholesterol is necessary for proliferation and survival of transformed cells. Here we analyse the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in colorectal cancer cells carrying oncogenic Ras or (V600E)B-RAF mutations. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment results in a significant increase in apoptosis in HT-29 and Colo-205 cells containing the (V600E)B-RAF mutation, but not in HCT-116 and LoVo cells harbouring the (G13D)Ras mutation, or BE cells, which possess two mutations, (G13D)Ras and (G463V)B-RAF. We also demonstrate that oncogenic Ras protects from apoptosis induced by cholesterol depletion through constitutive activation of the phosphatidylinositol-3 kinase (PI3K)/AKT pathway. The specific activation of the PI3K/AKT pathway by overexpression of the (V12)RasC40 mutant or a constitutively active AKT decreases the LPDS plus 25-HC-induced apoptosis in HT-29 cells, whereas PI3K inhibition or abrogation of AKT expression renders HCT-116 sensitive to cholesterol depletion-induced apoptosis. Moreover, our data show that LPDS plus 25-HC increases the activity of c-Jun N-terminal kinase proteins only in HT-29 cells and that the inhibition of this kinase blocks the apoptosis induced by LPDS plus 25-HC. Finally, we demonstrate that AKT hyperactivation by oncogenic Ras protects from apoptosis, preventing the activation of c-Jun N-terminal kinase by cholesterol depletion. Thus, our data demonstrate that low levels of cholesterol induce apoptosis in colorectal cancer cells without oncogenic Ras mutations. These results reveal a novel molecular characteristic of colon tumours containing Ras or B-RAF mutations and should help in defining new targets for cancer therapy.


American Journal of Physiology-cell Physiology | 2011

Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells

Matilde Alique; Laura Calleros; Alicia Luengo; Mercedes Griera; Miguel A. Iñiguez; Carmen Punzón; Manuel Fresno; Manuel Rodríguez-Puyol; Diego Rodríguez-Puyol

Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter. The present results show that progressive accumulation of collagen I in the extracellular medium induces a significant increase of COX-2 expression in human mesangial cells, resulting in an enhancement in PGE(2) production. COX-2 overexpression is due to increased COX-2 mRNA levels. The study of the mechanism implicated in COX-2 upregulation by collagen I showed focal adhesion kinase (FAK) activation. Furthermore, we observed that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by collagen I and collagen I-induced COX-2 overexpression was abolished by PI3K and AKT inhibitors. Additionally, we showed that the cAMP response element (CRE) transcription factor is implicated. Finally, we studied COX-2 expression in an animal model, N(G)-nitro-l-arginine methyl ester hypertensive rats. In renal tissue and vascular walls, COX-2 and collagen type I content were upregulated. In summary, our results provide evidence that collagen type I increases COX-2 expression via the FAK/PI3K/AKT/cAMP response element binding protein signaling pathway.

Collaboration


Dive into the Laura Calleros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge