Laura Cansolino
University of Pavia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Cansolino.
Applied Radiation and Isotopes | 2011
Subhra Mandal; Gerald James Bakeine; Silke Krol; Cinzia Ferrari; Anna Maria Clerici; C. Zonta; Laura Cansolino; F. Ballarini; Silva Bortolussi; Subrina Stella; Nicoletta Protti; Piero Bruschi; S. Altieri
The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors.
Nanomedicine: Nanotechnology, Biology and Medicine | 2014
Cesare Achilli; S. Grandi; Annarita Ciana; Gianni F. Guidetti; Alessandro Malara; Vittorio Abbonante; Laura Cansolino; Corrado Tomasi; Alessandra Balduini; Maurizio Fagnoni; Daniele Merli; Piercarlo Mustarelli; Ilaria Canobbio; Cesare Balduini; Giampaolo Minetti
UNLABELLED Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. FROM THE CLINICAL EDITOR Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies.
Applied Radiation and Isotopes | 2009
Cinzia Ferrari; C. Zonta; Laura Cansolino; Anna Maria Clerici; A. Gaspari; S. Altieri; Silva Bortolussi; Sabrina Stella; Piero Bruschi; P. Dionigi; Aris Zonta
Osteosarcoma is the most common non-hematologic primary cancer type that develops in bone. Current osteosarcoma treatments combine multiagent chemotherapy with extensive surgical resection, which in some cases makes necessary the amputation of the entire limb. Nevertheless its infiltrative growth leads to a high incidence of local and distant recurrences that reduce the percentage of cured patients to less than 60%. These poor data required to set up a new therapeutic approach aimed to restrict the surgical removal meanwhile performing a radical treatment. Boron neutron capture therapy (BNCT), a particular radiotherapy based on the nuclear capture and fission reactions by atoms of (10)B, when irradiated with thermal neutrons, could be a valid alternative or integrative option in case of osteosarcoma management, thanks to its peculiarity in selectively destroying neoplastic cells without damaging normal tissues. Aim of the present work is to investigate the feasibility of employing BNCT to treat the limb osteosarcoma. Boronophenylalanine (BPA) is used to carry (10)B inside the neoplastic cells. As a first step the endocellular BPA uptake is tested in vitro on the UMR-106 osteosarcoma cell line. The results show an adequate accumulation capability. For the in vivo experiments, an animal tumor model is developed in Sprague-Dawley rats by means of an intrafemoral injection of UMR-106 cells at the condyle site. The absolute amounts of boron loading and the tumor to normal tissue (10)B ratio are evaluated 2 h after the i.v. administration of BPA. The boron uptake by the neoplastic tissue is almost twice the normal one. However, higher values of boron concentration in tumor are requested before upholding BNCT as a valid therapeutic option in the treatment of osteosarcoma.
International Journal of Pharmaceutics | 2013
Laura Ciani; Silva Bortolussi; Ian Postuma; Laura Cansolino; Cinzia Ferrari; Luigi Panza; S. Altieri; Sandra Ristori
In this paper we propose a bottom-up approach to obtain new boron carriers built with ortho-carborane functionalized gold nanoparticles (GNPs) for applications in Boron Neutron Capture Therapy. The interaction between carboranes and the gold surface was assured by one or two SH-groups directly linked to the boron atoms of the B10C2 cage. This allowed obtaining stable, nontoxic systems, though optimal biological performance was hampered by low solubility in aqueous media. To improve cell uptake, the hydrophilic character of carborane functionalized GNPs was enhanced by further coverage with an appropriately tailored diblock copolymer (PEO-b-PCL). This polymer also contained pendant carboranes to provide anchoring to the pre-functionalized GNPs. In vitro tests, carried out on osteosarcoma cells, showed that the final vectors possessed excellent biocompatibility joint to the capacity of concentrating boron atoms in the target, which is encouraging evidenced to pursue applications in vivo.
Dalton Transactions | 2015
Daniela Pietrangeli; Angela Maria Rosa; S. Altieri; Silva Bortolussi; Ian Postuma; Nicoletta Protti; Cinzia Ferrari; Laura Cansolino; Anna Maria Clerici; Elisa Viola; Maria Pia Donzello; Giampaolo Ricciardi
The zinc(II) complex of the octa-anionic 2,3,9,10,16,17,23,24-octakis-(7-methyl-7,8-dicarba-nido-undeca-boran-8-yl)hexyl-thio-6,13,20,27-phthalocyanine (nido-[ZnMCHESPc]Cs8, 7) has been obtained in the form of caesium salt through mild deboronation of the neutral precursor, the closo-[ZnMCHESPc] complex, 6, with CsF. 6 has been synthesized, in turn, by heating a finely ground mixture of the appropriate phthalonitrile and zinc(II) acetate at 180.0 °C. The complexes have been characterized by elemental analyses, FT-IR, UV-visible absorption and fluorescence emission spectroscopy, and their structures were assessed by (1)H, (13)C, (11)B, and two-dimensional homo- and hetero-correlated NMR spectroscopy experiments. 7 showed appreciable solubility in water solution, together with a marked tendency to aggregate. Aggregation of 7 in the hydrotropic medium resulted in significant fluorescence quenching. Instead, fluorescence quantum yields (Φ(F)) of 0.14 and 0.08, and singlet oxygen quantum yields (Φ(Δ)) of 0.63 and 0.24 were obtained for 6 and 7, respectively, in a DMF solution. In vitro boron neutron capture therapy (BNCT) experiments, employing boron imaging techniques as implemented in qualitative and quantitative neutron autoradiography methods, showed that 7 is capable of increasing the boron concentration of two selected cancerous cell lines, the DHD/K12/TRb of rat colon adenocarcinoma and UMR-106 of rat osteosarcoma, with the large-size Cs(+) counter-ions used to neutralize the negatively charged carborane polyhedra not presenting a significant obstacle to the process. Taken together, BNCT and photophysical measurement results indicated that 7 is potentially suitable for bimodal or multimodal anticancer therapy.
Applied Radiation and Isotopes | 2011
Silva Bortolussi; J.G. Bakeine; F. Ballarini; Piero Bruschi; M.A. Gadan; Nicoletta Protti; S. Stella; Anna Maria Clerici; Cinzia Ferrari; Laura Cansolino; C. Zonta; Aris Zonta; Rosanna Nano; S. Altieri
Lung carcinoma is the leading cause of cancer mortality in the Western countries. Despite the introduction over the last few years of new therapeutic agents, survival from lung cancer has shown no discernible improvement in the last 20 years. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely. The selective boron uptake in the tumour with respect to healthy tissues makes Boron Neutron Capture Therapy a potentially advantageous option in the treatment of tumours that affect whole vital organs, and that are surgically inoperable. To study the possibility of applying BNCT to the treatment of diffuse pulmonary tumours, an animal model for boron uptake measurements in lung metastases was developed. Both healthy and tumour-bearing rats were infused with Boronophenylalanine (BPA) and sacrificed at different time intervals after drug administration. The lungs were extracted, and prepared for boron analysis by neutron autoradiography and α-spectroscopy. The boron concentrations in tumour and normal lung were plotted as a function of the time elapsed after BPA administration. The concentration in tumour is almost constant within the error bars for all the time intervals of the experiment (1-8 h), while the curve in normal lung decreases after 4 h from BPA infusion. At 4 h, the ratio of boron concentration in tumour to boron concentration in healthy lung is higher than 3, and it stays above this level up to 8 h. Also the images of boron distribution in the samples, obtained by neutron autoradiography, show a selective absorption in the metastases.
Radiation Research | 2011
Cinzia Ferrari; J. Bakeine; F. Ballarini; A. Boninella; Silva Bortolussi; P. Bruschi; Laura Cansolino; Anna Maria Clerici; A. Coppola; R. Di Liberto; P. Dionigi; Nicoletta Protti; S. Stella; A. Zonta; C. Zonta; S. Altieri
Boron neutron capture therapy (BNCT) is a binary radiotherapy based on thermal‐neutron irradiation of cells enriched with 10B, which produces &agr; particles and 7Li ions of short range and high biological effectiveness. The selective uptake of boron by tumor cells is a crucial issue for BNCT, and studies of boron uptake and washout associated with cell survival studies can be of great help in developing clinical applications. In this work, boron uptake and washout were characterized both in vitro for the DHDK12TRb (DHD) rat colon carcinoma cell line and in vivo using rats bearing liver metastases from DHD cells. Despite a remarkable uptake, a large boron release was observed after removal of the boron‐enriched medium from in vitro cell cultures. However, analysis of boron washout after rat liver perfusion in vivo did not show a significant boron release, suggesting that organ perfusion does not limit the therapeutic effectiveness of the treatment. The survival of boron‐loaded cells exposed to thermal neutrons was also assessed; the results indicated that the removal of extracellular boron does not limit treatment effectiveness if adequate amounts of boron are delivered and if the cells are kept at low temperature. Cell survival was also investigated theoretically using a mechanistic model/Monte Carlo code originally developed for radiation‐induced chromosome aberrations and extended here to cell death; good agreement between simulation outcomes and experimental data was obtained.
Reports of Practical Oncology & Radiotherapy | 2016
Ian Postuma; Silva Bortolussi; Nicoletta Protti; F. Ballarini; Piero Bruschi; Laura Ciani; Sandra Ristori; Luigi Panza; Cinzia Ferrari; Laura Cansolino; S. Altieri
AIM Boron Neutron Capture Therapy (BNCT) is a binary hadrontherapy which exploits the neutron capture reaction in boron, together with a selective uptake of boronated substances by the neoplastic tissue. There is increasing evidence that future improvements in clinical BNCT will be triggered by the discovery of new boronated compounds, with higher selectivity for the tumor with respect to clinically used sodium borocaptate (BSH) and boronophenylalanine (BPA). BACKGROUND Therefore, a (10)B quantification technique for biological samples is needed in order to evaluate the performance of new boronated formulations. MATERIALS AND METHODS This article describes an improved neutron autoradiography set-up employing radiation sensitive films where the latent tracks are made visible by proper etching conditions. RESULTS Calibration curves for both liquid and tissue samples were obtained. CONCLUSIONS The obtained calibration curves were adopted to set-up a mechanism to point out boron concentration in the whole sample.
Applied Radiation and Isotopes | 2014
Silva Bortolussi; Laura Ciani; Ian Postuma; Nicoletta Protti; Luca Reversi; Piero Bruschi; Cinzia Ferrari; Laura Cansolino; Luigi Panza; Sandra Ristori; S. Altieri
The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations.
Applied Radiation and Isotopes | 2011
M. Bonora; M. Corti; F. Borsa; Silva Bortolussi; Nicoletta Protti; D. Santoro; S. Stella; S. Altieri; C. Zonta; Anna Maria Clerici; Laura Cansolino; Cinzia Ferrari; Paolo Dionigi; A. Porta; G. Zanoni; G. Vidari
(10)B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include (1)H and (10)B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.