Laura Cantini
PSL Research University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Cantini.
Scientific Reports | 2015
Laura Cantini; Enzo Medico; Santo Fortunato; M. Caselle
We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation. To extract the relevant biological information from the multi-network we studied its partition into communities. To this end we applied a consensus clustering algorithm based on state of art community detection methods. Even if our procedure is valid in principle for any pathology in this work we concentrate on gastric, lung, pancreas and colorectal cancer and identified from the enrichment analysis of the multi-network communities a set of candidate driver cancer genes. Some of them were already known oncogenes while a few are new. The combination of the different layers of information allowed us to extract from the multi-network indications on the regulatory pattern and functional role of both the already known and the new candidate driver genes.
Nature Communications | 2015
Laura Cantini; Claudio Isella; Consalvo Petti; Gabriele Picco; Simone Chiola; Elisa Ficarra; M. Caselle; Enzo Medico
Colorectal cancer (CRC) transcriptional subtypes have been recently identified by gene expression profiling. Here we describe an analytical pipeline, microRNA master regulator analysis (MMRA), developed to search for microRNAs potentially driving CRC subtypes. Starting from a microRNA–mRNA tumour expression data set, MMRA identifies candidate regulator microRNAs by assessing their subtype-specific expression, target enrichment in subtype mRNA signatures and network analysis-based contribution to subtype gene expression. When applied to a CRC data set of 450 samples, assigned to subtypes by 3 different transcriptional classifiers, MMRA identifies 24 candidate microRNAs, in most cases downregulated in the stem/serrated/mesenchymal (SSM) poor prognosis subtype. Functional validation in CRC cell lines confirms downregulation of the SSM subtype by miR-194, miR-200b, miR-203 and miR-429, which share target genes and pathways mediating this effect. These results show that, by combining statistical tests, target prediction and network analysis, MMRA effectively identifies microRNAs functionally associated to cancer subtypes.
bioRxiv | 2018
Laura Cantini; Laurence Calzone; Loredana Martignetti; Mattias Rydenfelt; Nils Blüthgen; Emmanuel Barillot; Andrei Zinovyev
Gene signatures are more and more used to interpret results of omics data analyses but suffer from compositional (large overlap) and functional (correlated read-outs) redundancy. Moreover, many gene signatures rarely come out as significant in statistical tests. Based on pan-cancer data analysis, we construct a restricted set of 962 signatures defined as informative and demonstrate that they have a higher probability to appear enriched in comparative cancer studies. We show that the majority of informative signatures conserve their weights for the genes composing the signature (eigengenes) from one cancer type to another. We finally construct InfoSigMap, an interactive online map of these signatures and their cross-correlations. This map highlights the structure of compositional and functional redundancies between informative signatures, and it charts the territories of biological functions. InfoSigMap can be used to visualize the results of omics data analyses and suggests a rearrangement of existing gene sets.Data-driven signature classificationAn informative collection of gene signatures for transcriptomic data analysis is constructed. The number of transcriptomic signatures grows fast and their collections are highly redundant that hampers omics data analyses interpretation. A computational biology team from Institut Curie led by Andrei Zinovyev selected a collection of 962 gene signatures shown to be informative for cancer studies and reflecting mechanisms of cancer progression. The signatures were filtered from a large compendium without requiring any manual curation by experts through a large-scale unbiased analysis of pancancer data. They have much higher chance to obtain significant enrichment scores in a comparative trancriptomic study. The authors integrated the 962 signatures into InfoSigMap, a new data visualization resource for the interpretation of the results of omics data analyses, which facilitates getting an insight into the mechanisms driving cancer.
BMC Genomics | 2017
Ulykbek Kairov; Laura Cantini; Alessandro Greco; Askhat Molkenov; Urszula Czerwinska; Emmanuel Barillot; Andrei Zinovyev
BackgroundIndependent Component Analysis (ICA) is a method that models gene expression data as an action of a set of statistically independent hidden factors. The output of ICA depends on a fundamental parameter: the number of components (factors) to compute. The optimal choice of this parameter, related to determining the effective data dimension, remains an open question in the application of blind source separation techniques to transcriptomic data.ResultsHere we address the question of optimizing the number of statistically independent components in the analysis of transcriptomic data for reproducibility of the components in multiple runs of ICA (within the same or within varying effective dimensions) and in multiple independent datasets. To this end, we introduce ranking of independent components based on their stability in multiple ICA computation runs and define a distinguished number of components (Most Stable Transcriptome Dimension, MSTD) corresponding to the point of the qualitative change of the stability profile. Based on a large body of data, we demonstrate that a sufficient number of dimensions is required for biological interpretability of the ICA decomposition and that the most stable components with ranks below MSTD have more chances to be reproduced in independent studies compared to the less stable ones. At the same time, we show that a transcriptomics dataset can be reduced to a relatively high number of dimensions without losing the interpretability of ICA, even though higher dimensions give rise to components driven by small gene sets.ConclusionsWe suggest a protocol of ICA application to transcriptomics data with a possibility of prioritizing components with respect to their reproducibility that strengthens the biological interpretation. Computing too few components (much less than MSTD) is not optimal for interpretability of the results. The components ranked within MSTD range have more chances to be reproduced in independent studies.
research in computational molecular biology | 2018
Laura Cantini; Ulykbek Kairov; Aurélien de Reyniès; Emmanuel Barillot; François Radvanyi; Andrei Zinovyev
Motivation Matrix factorization methods are widely exploited in order to reduce dimensionality of transcriptomic datasets to the action of few hidden factors (metagenes). Applying such methods to similar independent datasets should yield reproducible inter-series outputs, though it was never demonstrated yet. Results We systematically test state-of-art methods of matrix factorization on several transcriptomic datasets of the same cancer type. Inspired by concepts of evolutionary bioinformatics, we design a new framework based on Reciprocally Best Hit (RBH) graphs in order to benchmark the method’s reproducibility. We show that a particular protocol of application of Independent Component Analysis (ICA), accompanied by a stabilisation procedure, leads to a significant increase in the inter-series output reproducibility. Moreover, we show that the signals detected through this method are systematically more interpretable than those of other state-of-art methods. We developed a user-friendly tool BIODICA for performing the Stabilized ICA-based RBH meta-analysis. We apply this methodology to the study of colorectal cancer (CRC) for which 14 independent publicly available transcriptomic datasets can be collected. The resulting RBH graph maps the landscape of interconnected factors that can be associated to biological processes or to technological artefacts. These factors can be used as clinical biomarkers or robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral microenvironment. Their intensities in different samples shed light on the mechanistic basis of CRC molecular subtyping. Availability The BIODICA tool is available from https://github.com/LabBandSB/BIODICA. Contact [email protected] and [email protected] Supplementary information Supplementary data are available at Bioinformatics online.
international conference on latent variable analysis and signal separation | 2018
Urszula Czerwinska; Laura Cantini; Ulykbek Kairov; Emmanuel Barillot; Andrei Zinovyev
Independent Component Analysis (ICA) can be used to model gene expression data as an action of a set of statistically independent hidden factors. The ICA analysis with a downstream component analysis was successfully applied to transcriptomic data previously in order to decompose bulk transcriptomic data into interpretable hidden factors. Some of these factors reflect the presence of an immune infiltrate in the tumor environment. However, no foremost studies focused on reproducibility of the ICA-based immune-related signal in the tumor transcriptome. In this work, we use ICA to detect immune signals in six independent transcriptomic datasets. We observe several strongly reproducible immune-related signals when ICA is applied in sufficiently high-dimensional space (close to one hundred). Interestingly, we can interpret these signals as cell-type specific signals reflecting a presence of T-cells, B-cells and myeloid cells, which are of high interest in the field of oncoimmunology. Further quantification of these signals in tumoral transcriptomes has a therapeutic potential.
bioRxiv | 2018
Laura Cantini; Gloria Bertoli; Claudia Cava; Thierry Dubois; Andrei Zinovyev; M. Caselle; Isabella Castiglioni; Emmanuel Barillot; Loredana Martignetti
MicroRNAs play important roles in many biological processes. Their aberrant expression can have oncogenic or tumor suppressor function directly participating to carcinogenesis, malignant transformation, invasiveness and metastasis. Indeed, miRNA profiles can distinguish not only between normal and cancerous tissue but they can also successfully classify different subtypes of a particular cancer. Here, we focus on a particular class of transcripts encoding polycistronic miRNA genes that yields multiple miRNA components. We describe clustered MiRNA Master Regulator Analysis (ClustMMRA), a fully redesigned release of the MMRA computational pipeline (MiRNA Master Regulator Analysis), developed to search for clustered miRNAs potentially driving cancer molecular subtyping. Genomically clustered miRNAs are frequently co-expressed to target different components of pro-tumorigenic signalling pathways. By applying ClustMMRA to breast cancer patient data, we identified key miRNA clusters driving the phenotype of different tumor subgroups. The pipeline was applied to two independent breast cancer datasets, providing statistically concordant results between the two analysis. We validated in cell lines the miR-199/miR-214 as a novel cluster of miRNAs promoting the triple negative subtype phenotype through its control of proliferation and EMT.
research in computational molecular biology | 2018
Urszula Czerwinska; Laura Cantini; Ulykbek Kairov; Emmanuel Barillot; Vassili Soumelis; Andrei Zinovyev
Archive | 2016
Claudio Isella; Laura Cantini; Sara Erika Bellomo; Simone Chiola; Enzo Medico
F1000Research | 2016
Laura Cantini