Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Cendron is active.

Publication


Featured researches published by Laura Cendron.


ACS Chemical Biology | 2012

Bicyclic peptide inhibitor reveals large contact interface with a protease target

Alessandro Angelini; Laura Cendron; Shiyu Chen; Jeremy Touati; Greg Winter; Giuseppe Zanotti; Christian Heinis

From a large combinatorial library of chemically constrained bicyclic peptides we isolated a selective and potent (K(i) = 53 nM) inhibitor of human urokinase-type plasminogen activator (uPA) and crystallized the complex. This revealed an extended structure of the peptide with both peptide loops engaging the target to form a large interaction surface of 701 Å(2) with multiple hydrogen bonds and complementary charge interactions, explaining the high affinity and specificity of the inhibitor. The interface resembles that between two proteins and suggests that these constrained peptides have the potential to act as small protein mimics.


ChemBioChem | 2007

The ATP-Binding Site of Protein Kinase CK2 Holds a Positive Electrostatic Area and Conserved Water Molecules.

Roberto Battistutta; Marco Mazzorana; Laura Cendron; Andrea Bortolato; Stefania Sarno; Zygmunt Kazimierczuk; Giuseppe Zanotti; Stefano Moro; Lorenzo A. Pinna

CK2 is a highly pleiotropic Ser/Thr protein kinase that is able to promote cell survival and enhance the tumour phenotype under specific circumstances. We have determined the crystal structure of three new complexes with tetrabromobenzimidazole derivatives that display Ki values between 0.15 and 0.30 μM. A comparative analysis of these data with those of four other inhibitors of the same family revealed the presence of some highly conserved water molecules in the ATP‐binding site. These waters reside near Lys68, in an area with a positive electrostatic potential that is able to attract and orient negatively charged ligands. The presence of this positive region and two unique bulky residues that are typical of CK2, Ile66 and Ile174, play a critical role in determining the ligand orientation and binding selectivity.


The Plant Cell | 2015

The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis

Stephan Wagner; Smrutisanjita Behera; Sara De Bortoli; David C. Logan; Philippe Fuchs; Luca Carraretto; Enrico Teardo; Laura Cendron; Thomas Nietzel; Magdalena Füßl; Fabrizio G. Doccula; Lorella Navazio; Mark D. Fricker; Olivier Van Aken; Iris Finkemeier; Andreas J. Meyer; Ildikò Szabò; Alex Costa; Markus Schwarzländer

The mitochondrial Ca2+ uptake protein At-MICU shapes mitochondrial Ca2+ dynamics, providing molecular in vivo evidence for the existence and function of a mitochondrial uniporter complex in plants. Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.


Journal of Biological Chemistry | 2014

DJ-1 Is a Copper Chaperone Acting on SOD1 Activation.

Stefania Girotto; Laura Cendron; Marco Bisaglia; Isabella Tessari; Stefano Mammi; Giuseppe Zanotti; Luigi Bubacco

Background: DJ-1 and SOD1 are proteins involved in Parkinson disease and ALS, respectively. Results: A novel DJ-1 copper binding site is characterized together with its ability to activate SOD1 through copper transfer. Conclusion: We have identified a putative role for DJ-1 as a copper chaperone. Significance: Alterations of the coordination of the copper ion in DJ-1 may affect neurodegenerative etiopathogenesis. Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis.


Journal of Biological Chemistry | 2007

The Structure of 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase Provides Insights into the Mechanism of Uric Acid Degradation

Laura Cendron; Claudia Folli; Ileana Ramazzina; Riccardo Percudani; Giuseppe Zanotti

The complete degradation of uric acid to (S)-allantoin, as recently elucidated, involves three enzymatic reactions. Inactivation by pseudogenization of the genes of the pathway occurred during hominoid evolution, resulting in a high concentration of urate in the blood and susceptibility to gout. Here, we describe the 1.8Å resolution crystal structure of the homodimeric 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase, which catalyzes the last step in the urate degradation pathway, for both ligand-free enzyme and enzyme in complex with the substrate analogs (R)-allantoin and guanine. Each monomer comprises ten α-helices, grouped into two domains and assembled in a novel fold. The structure and the mutational analysis of the active site have allowed us to identify some residues that are essential for catalysis, among which His-67 and Glu-87 appear to play a particularly significant role. Glu-87 may facilitate the exit of the carboxylate group because of electrostatic repulsion that destabilizes the ground state of the substrate, whereas His-67 is likely to be involved in a protonation step leading to the stereoselective formation of the (S)-allantoin enantiomer as reaction product. The structural and functional characterization of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase can provide useful information in view of the potential use of this enzyme in the enzymatic therapy of gout.


Journal of Biological Chemistry | 2008

Logical Identification of an Allantoinase Analog (puuE) Recruited from Polysaccharide Deacetylases

Ileana Ramazzina; Laura Cendron; Claudia Folli; Daniela Monteverdi; Giuseppe Zanotti; Riccardo Percudani

The hydrolytic cleavage of the hydantoin ring of allantoin, catalyzed by allantoinase, is required for the utilization of the nitrogen present in purine-derived compounds. The allantoinase gene (DAL1), however, is missing in many completely sequenced organisms able to use allantoin as a nitrogen source. Here we show that an alternative allantoinase gene (puuE) can be precisely identified by analyzing its logic relationship with three other genes of the pathway. The novel allantoinase is annotated in structure and sequence data bases as polysaccharide deacetylase for its homology with enzymes that catalyze hydrolytic reactions on chitin or peptidoglycan substrates. The recombinant PuuE protein from Pseudomonas fluorescens exhibits metal-independent allantoinase activity and stereospecificity for the S enantiomer of allantoin. The crystal structures of the protein and of protein-inhibitor complexes reveal an overall similarity with the polysaccharide deacetylase β/α barrel and remarkable differences in oligomeric assembly and active site geometry. The conserved Asp-His-His metal-binding triad is replaced by Glu-His-Trp, a configuration that is distinctive of PuuE proteins within the protein family. An extra domain at the top of the barrel offers a scaffold for protein tetramerization and forms a small substrate-binding cleft by hiding the large binding groove of polysaccharide deacetylases. Substrate positioning at the active site suggests an acid/base mechanism of catalysis in which only one member of the catalytic pair of polysaccharide deacetylases has been conserved. These data provide a structural rationale for the shifting of substrate specificity that occurred during evolution.


Journal of Biological Chemistry | 2011

Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation

Laura Cendron; Paola Berto; Sarah D'Adamo; Francesca Vallese; Chiara Govoni; Matthew C. Posewitz; Giorgio M. Giacometti; Paola Costantini; Giuseppe Zanotti

Background: HydF is a GTPase essential for maturation of [FeFe]-hydrogenase. Results: The first crystal structure of HydF has been determined. Conclusion: The protein monomer comprises a GTP-binding domain, a dimerization domain, and a metal-cluster binding domain. Two monomers dimerize, and two dimers can aggregate to a tetramer. Significance: The crystal structure of the latter furnishes several clues about the events necessary for cluster generation. [FeFe]-hydrogenases catalyze the reversible production of H2 in some bacteria and unicellular eukaryotes. These enzymes require ancillary proteins to assemble the unique active site H-cluster, a complex structure composed of a 2Fe center bridged to a [4Fe-4S] cubane. The first crystal structure of a key factor in the maturation process, HydF, has been determined at 3 Å resolution. The protein monomer present in the asymmetric unit of the crystal comprises three domains: a GTP-binding domain, a dimerization domain, and a metal cluster-binding domain, all characterized by similar folding motifs. Two monomers dimerize, giving rise to a stable dimer, held together mainly by the formation of a continuous β-sheet comprising eight β-strands from two monomers. Moreover, in the structure presented, two dimers aggregate to form a supramolecular organization that represents an inactivated form of the HydF maturase. The crystal structure of the latter furnishes several clues about the events necessary for cluster generation/transfer and provides an excellent model to begin elucidating the structure/function of HydF in [FeFe]-hydrogenase maturation.


FEBS Journal | 2011

Structural and functional aspects of unique type IV secretory components in the Helicobacter pylori cag‐pathogenicity island

Laura Cendron; Giuseppe Zanotti

Helicobacter pylori cytotoxin‐associated gene‐pathogenicity island (cagPAI) is responsible for the secretion of the CagA effector through a type IV secretion system (T4SS) apparatus, as well as of peptidoglycan and possibly other not yet identified factors. Twenty‐nine different polypeptide chains are encoded by this cluster of genes, although only some of them show a significant similarity with the constitutive elements of well characterized secretion systems from other bacteria. The other cagPAI components represent almost unique proteins in this scenario. The majority of the T4SS include approximately fifteen components, taking into account either the transmembrane complex subunits, ATPases or substrate factors. The composition of the cagPAI is very complex: it includes proteins most likely involved at different levels in the pilus assembly, stabilization and processing of secreted substrate, as well as regulatory particles possibly involved in the control of the entire apparatus. Despite recent findings with respect to components that play a role in the interaction with the host cell, the function of several cagPAI proteins remains unclear or unknown. This is particularly true for those that represent unique members with no clear similarity to those of other T4SS and no obvious evidence of involvement in the secretion of CagA or induction of pro‐inflammatory responses. We summarize what is known about these accessory components, both from a molecular and structural point of view, as well as their putative physiological role.


Journal of Molecular Biology | 2009

The Helicobacter pylori CagD (HP0545, Cag24) protein is essential for CagA translocation and maximal induction of interleukin-8 secretion.

Laura Cendron; Marc Roger Couturier; Alessandro Angelini; Nicola Barison; Markus Stein; Giuseppe Zanotti

Pathogenic strains of Helicobacter pylori use a type IV secretion system (T4SS) to deliver the toxin CagA into human host cells. The T4SS, along with the toxin itself, is coded into a genomic insert, which is termed the cag pathogenicity island. The cag pathogenicity island contains about 30 open-reading frames, for most of which the exact function is not well characterized or totally unknown. We have determined the crystal structure of one of the proteins coded by the cag genes, CagD, in two crystal forms. We show that the protein is a covalent dimer in which each monomer folds as a single domain that is composed of five beta-strands and three alpha-helices. Our data show that in addition to a cytosolic pool, CagD partially associates with the inner membrane, where it may be exposed to the periplasmic space. Furthermore, CagA tyrosine phosphorylation and interleukin-8 assays identified CagD as a crucial component of the T4SS that is involved in CagA translocation into host epithelial cells; however, it does not seem absolutely necessary for pilus assembly. We have also identified significant amounts of CagD in culture supernatants, which are not a result of general bacterial lysis. Since this localization was independent of the various tested cag mutants, our findings may indicate that CagD is released into the supernatant during host cell infection and then binds to the host cell surface or is incorporated in the pilus structure. Overall, our results suggest that CagD may serve as a unique multifunctional component of the T4SS that may be involved in CagA secretion at the inner membrane and may localize outside the bacteria to promote additional effects on the host cell.


Biochimica et Biophysica Acta | 2012

The [4Fe-4S]-cluster coordination of [FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE spectroscopies.

Paola Berto; Marilena Di Valentin; Laura Cendron; Francesca Vallese; Marco Albertini; Enrico Salvadori; Giorgio M. Giacometti; Donatella Carbonera; Paola Costantini

[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe-4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe-4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron-sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx(46-53)HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.

Collaboration


Dive into the Laura Cendron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donatella Tondi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Angelini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Francesca Spyrakis

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge