Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Ciarlo is active.

Publication


Featured researches published by Laura Ciarlo.


Molecular Cancer | 2010

Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study

Paola Matarrese; Barbara Ascione; Laura Ciarlo; Rosa Vona; Carlo Leonetti; Marco Scarsella; Anna Maria Mileo; Caterina Catricalà; Marco G. Paggi; Walter Malorni

BackgroundCathepsins represent a group of proteases involved in determining the metastatic potential of cancer cells. Among these are cysteinyl- (e.g. cathepsin B and cathepsin L) and aspartyl-proteases (e.g. cathepsin D), normally present inside the lysosomes as inactive proenzymes. Once released in the extracellular space, cathepsins contribute to metastatic potential by facilitating cell migration and invasiveness.ResultsIn the present work we first evaluated, by in vitro procedures, the role of cathepsins B, L and D, in the remodeling, spreading and invasiveness of eight different cell lines: four primary and four metastatic melanoma cell lines. Among these, we considered two cell lines derived from a primary cutaneous melanoma and from a supraclavicular lymph node metastasis of the same patient. To this purpose, the effects of specific chemical inhibitors of these proteases, i.e. CA-074 and CA-074Me for cathepsin B, Cathepsin inhibitor II for cathepsin L, and Pepstatin A for cathepsin D, were evaluated. In addition, we also analyzed the effects of the biological inhibitors of these cathepsins, i.e. specific antibodies, on cell invasiveness. We found that i) cathepsin B, but not cathepsins L and D, was highly expressed at the surface of metastatic but not of primary melanoma cell lines and that ii) CA-074, or specific antibodies to cathepsin B, hindered metastatic cell spreading and dissemination, whereas neither chemical nor biological inhibitors of cathepsins D and L had significant effects. Accordingly, in vivo studies, i.e. in murine xenografts, demonstrated that CA-074 significantly reduced human melanoma growth and the number of artificial lung metastases.ConclusionsThese results suggest a reappraisal of the use of cathepsin B inhibitors (either chemical or biological) as innovative strategy in the management of metastatic melanoma disease.


The FASEB Journal | 2009

Raft component GD3 associates with tubulin following CD95/Fas ligation

Maurizio Sorice; Paola Matarrese; Antonella Tinari; Anna Maria Giammarioli; Tina Garofalo; Valeria Manganelli; Laura Ciarlo; Lucrezia Gambardella; Giorgio Maccari; Maurizio Botta; Roberta Misasi; Walter Malorni

In a previous investigation, we demonstrated that after CD95/Fas triggering, raft‐associated GD3 ganglioside, normally localized at the plasma membrane of T cells, can be detected in mitochondria, where they contribute to apoptogenic events. Here, we show the association of the glycosphingolipid GD3 with microtubular cytoskeleton at very early time points following Fas ligation. This was assessed by different methodological approaches, including fluorescence resonance energy transfer, immunoelectron microscopy, and coimmunoprecipitation. Furthermore, docking analysis also showed that GD3 has a high affinity for the pore formed by 4 tubulin heterodimers (type I pore), thus suggesting a possible direct interaction between tubulin and GD3. Finally, time‐course analyses indicated that the relocalization of GD3 to the mitochondria was time related with the alterations of the mitochondrial membrane potential. Hence, microtubules could act as tracks for ganglioside redistribution following apoptotic stimulation, possibly contributing to the mitochondrial alterations leading to cell death.—Sorice, M., Matarrese, P., Tinari, A., Giammarioli, A. M., Garofalo, T., Manganelli, V., Ciarlo, L., Gambardella, L., Maccari, G., Botta, M., Misasi, R., Malorni, W. Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J. 23, 3298–3308 (2009). www.fasebj.org


Methods in Enzymology | 2008

Analyzing Morphological and Ultrastructural Features in Cell Death

Antonella Tinari; Anna Maria Giammarioli; Valeria Manganelli; Laura Ciarlo; Walter Malorni

Diverse forms of cell death have initially been described thanks to their observation at the electron microscope. Morphological and ultrastructural features of necrosis, apoptosis, and autophagy, considered here as prototypic cell death processes, allow one to characterize and quantify early and late cytopathological changes occurring in cells undergoing degeneration. Both light microscopy and scanning electron microscopy can provide useful insights, for example, to quantitatively evaluate cell death or to characterize cell surface changes of the cells, respectively. However, transmission electron microscopy preparation allows distinguishing among different forms of cell death. This chapter describes in brief the methods used to characterize cell death forms, including membrane, nucleus, and organelle changes, and shows paradigmatic micrographs. In particular, morphogenetic changes occurring in mitochondria during apoptosis, that is, fission process or, conversely, vacuole formation during autophagy, are shown. Possible artifacts are also described. Ultrastructural analysis seems still to provide essential information for studies on cell death.


Molecular Biology of the Cell | 2011

Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution

Vincenzo Mattei; Paola Matarrese; Tina Garofalo; Antonella Tinari; Lucrezia Gambardella; Laura Ciarlo; Valeria Manganelli; Vincenzo Tasciotti; Roberta Misasi; Walter Malorni; Maurizio Sorice

PrPC is identified as a new component of mitochondrial raft-like microdomains in T cells undergoing CD95/Fas–mediated apoptosis, and microtubular network integrity and function could play a role in the redistribution of PrPC from the plasma membrane to the mitochondria.


Biology of Sex Differences | 2016

Low expression of estrogen receptor β in T lymphocytes and high serum levels of anti-estrogen receptor α antibodies impact disease activity in female patients with systemic lupus erythematosus

Angela Maselli; Fabrizio Conti; Cristiano Alessandri; Tania Colasanti; Cristiana Barbati; Marta Vomero; Laura Ciarlo; Mario Patrizio; Francesca Romana Spinelli; Elena Ortona; Guido Valesini; Marina Pierdominici

BackgroundCurrent evidence indicates that estrogens, in particular 17β-estradiol (E2), play a crucial role in the gender bias of autoimmune diseases although the underlying molecular mechanisms have not yet been fully elucidated. Immune cells have estrogen receptors (ERs), i.e., ERα and ERβ, that play pro- and anti-inflammatory functions, respectively, and the presence of one estrogen receptor (ER) subtype over the other might change estrogen effects, promoting or dampening inflammation. In this study, we contributed to define the influences of E2 on T cells from female patients with systemic lupus erythematosus (SLE), a representative autoimmune disease characterized by a higher prevalence in women than in men (female/male ratio 9:1). Particularly, our aim was to evaluate whether alterations of ERα and ERβ expression in T cells from female SLE patients may impact lymphocyte sensitivity to E2 and anti-ERα antibody (anti-ERα Ab) stimulation interfering with cell signaling and display a direct clinical effect.MethodsSixty-one premenopausal female patients with SLE and 40 age-matched healthy donors were recruited. Patients were divided into two groups based on the SLE Disease Activity Index 2000 (SLEDAI-2K) (i.e., <6 and ≥6). ER expression was evaluated in T lymphocytes by flow cytometry, immunofluorescence, and Western blot analyses. Serum anti-ERα Ab levels were analyzed by enzyme-linked immunosorbent assay (ELISA). ER-dependent signaling pathways were measured by a phosphoprotein detection kit.ResultsIntracellular ERβ expression was significantly lower in T cells from patients with SLEDAI-2K ≥6 as compared with healthy donors and patients with SLEDAI-2K <6 and negatively correlated with disease activity. The expression of intracellular and membrane-associated-ERα was similar in SLE and control T cells. ER-dependent signaling pathways were activated in T cells from SLE patients with SLEDAI-2K ≥6, but not with SLEDAI-2K <6, when both membrane and intracellular ERs were stimulated by co-treatment with E2 and anti-ERα Abs.ConclusionsOur results demonstrate an altered ER profile in SLE patients, possibly contributing to SLE pathogenesis and interfering with clinical activity, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of disease activity.


Apoptosis | 2015

Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids

Chiara Tommasino; Matteo Marconi; Laura Ciarlo; Paola Matarrese; Walter Malorni

Apoptosis and autophagy are two evolutionary conserved processes that exert a critical role in the maintenance of tissue homeostasis. While apoptosis is a tightly regulated cell program implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in the lysosomal degradation and recycling of proteins and organelles, and is thereby considered an important cytoprotection mechanism. Sphingolipids (SLs), which are ubiquitous membrane lipids in eukaryotes, participate in the generation of various membrane structures, including lipid rafts and caveolae, and contribute to a number of cellular functions such as cell proliferation, apoptosis and, as suggested more recently, autophagy. For instance, SLs are hypothesized to be involved in several intracellular processes, including organelle membrane scrambling, whilst at the plasma membrane lipid rafts, acting as catalytic domains, strongly contribute to the ignition of critical signaling pathways determining cell fate. In particular, by targeting several shared regulators, ceramide, sphingosine-1-phosphate, dihydroceramide, sphingomyelin and gangliosides seem able to differentially regulate the autophagic pathway and/or contribute to the autophagosome formation. This review illustrates recent studies on this matter, particularly lipid rafts, briefly underscoring the possible implication of SLs and their alterations in the autophagy disturbances and in the pathogenesis of some human diseases.


Cell Death and Disease | 2013

Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies

Matteo Marconi; Barbara Ascione; Laura Ciarlo; Rosa Vona; Tina Garofalo; Maurizio Sorice; A M Gianni; Silvia L. Locatelli; Carmelo Carlo-Stella; Walter Malorni; Paola Matarrese

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) acts as an apoptosis inducer for cancer cells sparing non-tumor cell targets. However, several phase I/II clinical trials have shown limited benefits of this molecule. In the present work, we investigated whether cell susceptibility to TRAIL ligation could be due to the presence of TRAIL death receptors (DRs) 4 and 5 in membrane microdomains called lipid rafts. We performed a series of analyses, either by biochemical methods or fluorescence resonance energy transfer (FRET) technique, on normal cells (i.e. lymphocytes, fibroblasts, endothelial cells), on a panel of human cancer B-cell lines as well as on CD19+ lymphocytes from patients with B-chronic lymphocytic leukemia, treated with different TRAIL ligands, that is, recombinant soluble TRAIL, specific agonistic antibodies to DR4 and DR5, or CD34+ TRAIL-armed cells. Irrespective to the expression levels of DRs, a molecular interaction between ganglioside GM3, abundant in lymphoid cells, and DR4 was detected. This association was negligible in all non-transformed cells and was strictly related to TRAIL susceptibility of cancer cells. Interestingly, lipid raft disruptor methyl-beta-cyclodextrin abrogated this susceptibility, whereas the chemotherapic drug perifosine, which induced the recruitment of TRAIL into lipid microdomains, improved TRAIL-induced apoptosis. Accordingly, in ex vivo samples from patients with B-chronic lymphocytic leukemia, the constitutive embedding of DR4 in lipid microdomains was associated per se with cell death susceptibility, whereas its exclusion was associated with TRAIL resistance. These results provide a key mechanism for TRAIL sensitivity in B-cell malignances: the association, within lipid microdomains, of DR4 but not DR5, with a specific ganglioside, that is the monosialoganglioside GM3. On these bases we suggest that lipid microdomains could exert a catalytic role for DR4-mediated cell death and that an ex vivo quantitative FRET analysis could be predictive of cancer cell sensitivity to TRAIL.


Communicative & Integrative Biology | 2012

Dynamics of mitochondrial raft-like microdomains in cell life and death.

Maurizio Sorice; Vincenzo Mattei; Paola Matarrese; Tina Garofalo; Antonella Tinari; Lucrezia Gambardella; Laura Ciarlo; Valeria Manganelli; Vincenzo Tasciotti; Roberta Misasi; Walter Malorni

On the basis of the biochemical nature of lipid rafts, composed by glycosphingolipids, cholesterol and signaling proteins, it has been suggested that they are part of the complex framework of subcellular intermixing activities that lead to CD95/Fas-triggered apoptosis. We demonstrated that, following CD95/Fas triggering, cellular prion protein (PrPC), which represents a paradigmatic component of lipid rafts, was redistributed to mitochondrial raft-like microdomains via endoplasmic reticulum (ER)-mitochondria associated membranes (MAM) and microtubular network. Raft-like microdomains appear to be involved in a series of intracellular functions, such as: (1) the membrane “scrambling” that participates in cell death execution pathways, (2) the remodeling of organelles, (3) the recruitment of proteins to the mitochondria; (4) the mitochondrial oxidative phosphorylation and ATP production. In conclusion, we suggest that lipid raft components can exert their regulatory activity in apoptosis execution at three different levels: (1) in the DISC formation at the plasma membrane; (2) in the intracellular redistribution at cytoplasmic organelles, and, (3) in the structural and functional mitochondrial modifications associated with apoptosis execution.


Journal of Lipid Research | 2012

Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington's disease

Laura Ciarlo; Valeria Manganelli; Paola Matarrese; Tina Garofalo; Antonella Tinari; Lucrezia Gambardella; Matteo Marconi; Maria Grazia Grasso; Roberta Misasi; Maurizio Sorice; Walter Malorni

Huntingtons disease (HD) is a genetic neurodegenerative disease characterized by an exceedingly high number of contiguous glutamine residues in the translated protein, huntingtin (Htt). The primary site of cell toxicity is the nucleus, but mitochondria have been identified as key components of cell damage. The present work has been carried out in immortalized lymphocytes from patients with HD. These cells, in comparison with lymphoid cells from healthy subjects, displayed: i) a redistribution of mitochondria, forming large aggregates; ii) a constitutive hyperpolarization of mitochondrial membrane; and iii) a constitutive alteration of mitochondrial fission machinery, with high apoptotic susceptibility. Moreover, mitochondrial fission molecules, e.g., protein dynamin-related protein 1, as well as Htt, associated with mitochondrial raft-like microdomains, glycosphingolipid-enriched structures detectable in mitochondria. These findings, together with the observation that a ceramide synthase inhibitor and a raft disruptor are capable of impairing the peculiar mitochondrial remodeling in HD cells, suggest that mitochondrial alterations occurring in these cells could be due to raft-mediated defects of mitochondrial fission/fusion machinery.


Oncotarget | 2017

Estrogen receptor β ligation inhibits Hodgkin lymphoma growth by inducing autophagy

Marina Pierdominici; Angela Maselli; Silvia L. Locatelli; Laura Ciarlo; Giuseppa Careddu; Mario Patrizio; Barbara Ascione; Antonella Tinari; Carmelo Carlo-Stella; Walter Malorni; Paola Matarrese; Elena Ortona

Although Hodgkin lymphoma (HL) is curable with current therapy, at least 20% of patients relapse or fail to make complete remission. In addition, patients who achieve long-term disease-free survival frequently undergo infertility, secondary malignancies, and cardiac failure, which are related to chemotherapeutic agents and radiation therapies. Hence, new therapeutic strategies able to counteract the HL disease in this important patient population are still a matter of study. Estrogens, in particular 17β-estradiol (E2), have been suggested to play a role in lymphoma cell homeostasis by estrogen receptors (ER) β activation. On these bases, we investigated whether the ligation of ERβ by a selective agonist, the 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), could impact HL tumor growth. We found that DPN-mediated ERβ activation led to a reduction of in vitro cell proliferation and cell cycle progression by inducing autophagy. In nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice engrafted with HL cells, ERβ activation by DPN was able to reduce lymphoma growth up to 60% and this associated with the induction of tumor cell autophagy. Molecular characterization of ERβ-induced autophagy revealed an overexpression of damage-regulated autophagy modulator 2 (DRAM2) molecule, whose role in autophagy modulation is still debated. After ERβ activation, both DRAM2 and protein 1 light chain 3 (LC3), a key actor in the autophagosome formation, strictly interacted each other and localized at mitochondrial level. Altogether these results suggest that targeting ERβ with selective agonists might affect HL cell proliferation and tumor growth via a mechanism that brings into play DRAM2-dependent autophagic cascade.

Collaboration


Dive into the Laura Ciarlo's collaboration.

Top Co-Authors

Avatar

Walter Malorni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Matarrese

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Antonella Tinari

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Lucrezia Gambardella

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Maurizio Sorice

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Tina Garofalo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valeria Manganelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Barbara Ascione

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Matteo Marconi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Roberta Misasi

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge