Laura Dunn
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Dunn.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Haydn T. Kissick; Martin G. Sanda; Laura Dunn; Kathryn L. Pellegrini; Seung T. On; Jonathan K. Noel; Mohamed S. Arredouani
Significance Testosterone has been implicated as a regulator of the immune response to viruses, vaccines, host tissue, and cancer. Despite this pleiotropic effect on the immune system, the mechanisms underlying this effect are not well understood. In this study, we investigated how testosterone altered gene expression and signaling mechanisms in CD4 T cells in mouse models and prostate cancer patients undergoing androgen deprivation therapy. We found that testosterone inhibited T-helper 1 differentiation by up-regulating the phosphatase, Ptpn1, in both mice and humans. Additionally, the androgen receptor bound a highly conserved region of the Ptpn1 gene, suggesting an evolutionarily important purpose of this mechanism. This study provides a mechanism to explain recent discoveries regarding the role of testosterone-mediated inhibition of the immune response. The hormonal milieu influences immune tolerance and the immune response against viruses and cancer, but the direct effect of androgens on cellular immunity remains largely uncharacterized. We therefore sought to evaluate the effect of androgens on murine and human T cells in vivo and in vitro. We found that murine androgen deprivation in vivo elicited RNA expression patterns conducive to IFN signaling and T-cell differentiation. Interrogation of mechanism showed that testosterone regulates T-helper 1 (Th1) differentiation by inhibiting IL-12–induced Stat4 phosphorylation: in murine models, we determined that androgen receptor binds a conserved region within the phosphatase, Ptpn1, and consequent up-regulation of Ptpn1 then inhibits IL-12 signaling in CD4 T cells. The clinical relevance of this mechanism, whereby the androgen milieu modulates CD4 T-cell differentiation, was ascertained as we found that androgen deprivation reduced expression of Ptpn1 in CD4 cells from patients undergoing androgen deprivation therapy for prostate cancer. Our findings, which demonstrate a clinically relevant mechanism by which androgens inhibit Th1 differentiation of CD4 T cells, provide rationale for targeting androgens to enhance CD4-mediated immune responses in cancer or, conversely, for modulating androgens to mitigate CD4 responses in disorders of autoimmunity.
PLOS ONE | 2014
Haydn T. Kissick; Laura Dunn; Sanjukta Ghosh; Morris Nechama; Lester Kobzik; Mohamed S. Arredouani
The scavenger receptor MARCO mediates macrophage recognition and clearance of pathogens and their polyanionic ligands. However, recent studies demonstrate MARCO expression and function in dendritic cells, suggesting MARCO might serve to bridge innate and adaptive immunity. To gain additional insight into the role of MARCO in dendritic cell activation and function, we profiled transcriptomes of mouse splenic dendritic cells obtained from MARCO deficient mice and their wild type counterparts under resting and activating conditions. In silico analysis uncovered major alterations in gene expression in MARCO deficient dendritic cells resulting in dramatic alterations in key dendritic cell-specific pathways and functions. Specifically, changes in CD209, FCGR4 and Complement factors can have major consequences on DC-mediated innate responses. Notably, these perturbations were magnified following activation with the TLR-4 agonist lipopolysaccharide. To validate our in silico data, we challenged DC‘s with various agonists that recognize all mouse TLRs and assessed expression of a set of immune and inflammatory marker genes. This approach identified a differential contribution of MARCO to TLR activation and validated a major role for MARCO in mounting an inflammatory response. Together, our data demonstrate that MARCO differentially affects TLR-induced DC activation and suggest targeting of MARCO could lead to different outcomes that depend on the inflammatory context encountered by DC.
PLOS ONE | 2014
Haydn T. Kissick; Martin G. Sanda; Laura Dunn; Mohamed S. Arredouani
Here, we sought to determine whether peptide vaccines designed harbor both class I as well as class II restricted antigenic motifs could concurrently induce CD4 and CD8 T cell activation against autologous tumor antigens. Based on our prior genome-wide interrogation of human prostate cancer tissues to identify genes over-expressed in cancer and absent in the periphery, we targeted SIM2 as a prototype autologous tumor antigen for these studies. Using humanized transgenic mice we found that the 9aa HLA-A*0201 epitope, SIM2237–245, was effective at inducing an antigen specific response against SIM2-expressing prostate cancer cell line, PC3. Immunization with a multi-epitope peptide harboring both MHC-I and MHC-II restricted epitopes induced an IFN-γ response in CD8 T cells to the HLA-A*0201-restricted SIM2237–245 epitope, and an IL-2 response by CD4 T cells to the SIM2240–254 epitope. This peptide was also effective at inducing CD8+ T-cells that responded specifically to SIM2-expressing tumor cells. Collectively, the data presented in this study suggest that a single peptide containing multiple SIM2 epitopes can be used to induce both a CD4 and CD8 T cell response, providing a peptide-based vaccine formulation for potential use in immunotherapy of various cancers.
Journal of Virology | 2014
Mohamed S. Arredouani; Manoj Bhasin; David R. Sage; Laura Dunn; Michael B. Gill; Deep Agnani; Towia A. Libermann; Joyce D. Fingeroth
ABSTRACT Epstein-Barr virus (EBV) attachment to human CD21 on the B-cell surface initiates infection. Whether CD21 is a simple tether or conveys vital information to the cell interior for production of host factors that promote infection of primary B cells is controversial, as the cytoplasmic fragment of CD21 is short, though highly conserved. The ubiquity of CD21 on normal B cells, the diversity of this population, and the well-known resistance of primary B cells to gene transfer technologies have all impeded resolution of this question. To uncover the role(s) of the CD21 cytoplasmic domain during infection initiation, the full-length receptor (CD21 = CR), a mutant lacking the entire cytoplasmic tail (CT), and a control vector (NEO) were stably expressed in two pre-B-cell lines that lack endogenous receptor. Genome-wide transcriptional analysis demonstrated that stable CD21 surface expression alone (either CR or CT) produced multiple independent changes in gene expression, though both dramatically decreased class I melanoma-associated antigen (MAGE) family RNAs and upregulated genes associated with B-cell differentiation (e.g., C2TA, HLA-II, IL21R, MIC2, CD48, and PTPRCAP/CD45-associated protein). Temporal analysis spanning 72 h revealed that not only CR- but also CT-expressing lines initiated latency. In spite of this, the number and spectrum of transcripts altered in CR- compared with CT-bearing lines at 1 h after infection further diverged. Differential modulation of immediate early cellular transcripts (e.g., c-Jun and multiple histones), both novel and previously linked to CD21-initiated signaling, as well as distinct results from pathway analyses support a separate role for the cytoplasmic domain in initiation of intracellular signals. IMPORTANCE Membrane proteins that mediate virus attachment tether virus particles to the cell surface, initiating infection. In addition, upon virus interaction such proteins may transmit signals to the interior of the cell that support subsequent steps in the infection process. Here we show that expression of the Epstein-Barr virus B-cell attachment receptor, CD21, in B cells that lack this receptor results in significant changes in gene expression, both before and rapidly following EBV-CD21 interaction. These changes translate into major signaling pathway alterations that are predicted to support stable infection.
BMC Cancer | 2015
Haydn T. Kissick; Seung T. On; Laura Dunn; Martin G. Sanda; John M. Asara; Kathryn L. Pellegrini; Jonathan K. Noel; Mohamed S. Arredouani
BackgroundThe TMPRSS2-ERG gene fusion occurs in about half of prostate cancer (PCa) cases and results in overexpression of the transcription factor ERG. Overexpression of ERG has many effects on cellular function. However, how these changes enhance cell growth and promote tumor development is unclear.MethodsTo investigate the role of ERG, LNCaP and PC3 cells were transfected with ERG and gene expression and metabolic profile were analyzed.ResultsOur data show that expression of ERG induces overexpression of many nicotinicacetylcholine receptors (nAChRs). In addition, metabolic profiling by LC-MS/MS revealed elevated production of several neurotransmitters in cells expressing ERG. Consistently, treatment of ERG-expressing cells with nicotine induced elevated calcium influx, GSK3β (Ser9) phosphorylation and cell proliferation. Finally, we show that PCa patientswho are smokers have larger tumors if their tumors are TMPRSS2-ERG gene fusion positive.ConclusionCollectively, our data suggest that ERG sensitizes prostate tumor cells to neurotransmitter receptor agonists like nicotine.
Journal of Immunology | 2012
M. Simo Arredouani; Haydn T. Kissick; Laura Dunn; Terry B. Strom; Martin G. Sanda
Journal of Immunology | 2012
Haydn T. Kissick; Laura Dunn; Bin Lu; Martin G. Sanda; M. Simo Arredouani
Journal of Immunology | 2012
M. Simo Arredouani; Haydn T. Kissick; Laura Dunn; Martin G. Sanda
Journal of Immunology | 2012
Bindu Varghese; Lydia Lynch; Lianne Vriend; Haydn T. Kissick; Laura Dunn; Sharlin Varghese; Glenn Dranoff; M. Simo Arredouani; Steven P. Balk; Mark A. Exley
Journal of Immunology | 2012
Bindu Varghese; Lydia Lynch; Lianne Vriend; Haydn T. Kissick; Laura Dunn; Sharlin Varghese; M. Simo Arredouani; Steven P. Balk; Mark A. Exley