Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura E. MacConaill is active.

Publication


Featured researches published by Laura E. MacConaill.


Nature | 2012

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Jordi Barretina; Giordano Caponigro; Nicolas Stransky; Kavitha Venkatesan; Adam A. Margolin; Sungjoon Kim; Christopher J. Wilson; Joseph Lehar; Gregory V. Kryukov; Dmitriy Sonkin; Anupama Reddy; Manway Liu; Lauren Murray; Michael F. Berger; John E. Monahan; Paula Morais; Jodi Meltzer; Adam Korejwa; Judit Jané-Valbuena; Felipa A. Mapa; Joseph Thibault; Eva Bric-Furlong; Pichai Raman; Aaron Shipway; Ingo H. Engels; Jill Cheng; Guoying K. Yu; Jianjun Yu; Peter Aspesi; Melanie de Silva

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.


Journal of Clinical Oncology | 2011

Dissecting Therapeutic Resistance to RAF Inhibition in Melanoma by Tumor Genomic Profiling

Nikhil Wagle; Caroline Emery; Michael F. Berger; Matthew J. Davis; Allison M. Sawyer; Panisa Pochanard; Sarah M. Kehoe; Cory M. Johannessen; Laura E. MacConaill; William C. Hahn; Matthew Meyerson; Levi A. Garraway

A detailed understanding of the mechanisms by which tumors acquire resistance to targeted anticancer agents should speed the development of treatment strategies with lasting clinical efficacy. RAF inhibition in BRAF-mutant melanoma exemplifies the promise and challenge of many targeted drugs; although response rates are high, resistance invariably develops. Here, we articulate overarching principles of resistance to kinase inhibitors, as well as a translational approach to characterize resistance in the clinical setting through tumor mutation profiling. As a proof of principle, we performed targeted, massively parallel sequencing of 138 cancer genes in a tumor obtained from a patient with melanoma who developed resistance to PLX4032 after an initial dramatic response. The resulting profile identified an activating mutation at codon 121 in the downstream kinase MEK1 that was absent in the corresponding pretreatment tumor. The MEK1(C121S) mutation was shown to increase kinase activity and confer robust resistance to both RAF and MEK inhibition in vitro. Thus, MEK1(C121S) or functionally similar mutations are predicted to confer resistance to combined MEK/RAF inhibition. These results provide an instructive framework for assessing mechanisms of acquired resistance to kinase inhibition and illustrate the use of emerging technologies in a manner that may accelerate personalized cancer medicine.


Blood | 2010

Recurrent BRAF mutations in Langerhans cell histiocytosis

Gayane Badalian-Very; Jo-Anne Vergilio; Barbara A. Degar; Laura E. MacConaill; Barbara Brandner; Monica L. Calicchio; Frank C. Kuo; Azra H. Ligon; Kristen E. Stevenson; Sarah M. Kehoe; Levi A. Garraway; William C. Hahn; Matthew Meyerson; Mark D. Fleming; Barrett J. Rollins

Langerhans cell histiocytosis (LCH) has a broad spectrum of clinical behaviors; some cases are self-limited, whereas others involve multiple organs and cause significant mortality. Although Langerhans cells in LCH are clonal, their benign morphology and their lack (to date) of reported recurrent genomic abnormalities have suggested that LCH may not be a neoplasm. Here, using 2 orthogonal technologies for detecting cancer-associated mutations in formalin-fixed, paraffin-embedded material, we identified the oncogenic BRAF V600E mutation in 35 of 61 archived specimens (57%). TP53 and MET mutations were also observed in one sample each. BRAF V600E tended to appear in younger patients but was not associated with disease site or stage. Langerhans cells stained for phospho-mitogen-activated protein kinase kinase (phospho-MEK) and phospho-extracellular signal-regulated kinase (phospho-ERK) regardless of mutation status. High prevalence, recurrent BRAF mutations in LCH indicate that it is a neoplastic disease that may respond to RAF pathway inhibitors.


PLOS ONE | 2009

Profiling Critical Cancer Gene Mutations in Clinical Tumor Samples

Laura E. MacConaill; Catarina D. Campbell; Sarah M. Kehoe; Adam J. Bass; Charles Hatton; Lili Niu; Matthew M. Davis; Keluo Yao; Megan Hanna; Chandrani Mondal; Lauren Luongo; Caroline Emery; Alissa C. Baker; Juliet Philips; Deborah J. Goff; Michelangelo Fiorentino; Mark A. Rubin; Kornelia Polyak; Jennifer Chan; Yuexiang Wang; Jonathan A. Fletcher; Sandro Santagata; Gianni Corso; Franco Roviello; Ramesh A. Shivdasani; Mark W. Kieran; Keith L. Ligon; Charles D. Stiles; William C. Hahn; Matthew Meyerson

Background Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting. Methodology We developed and implemented an optimized mutation profiling platform (“OncoMap”) to interrogate ∼400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact. Conclusions Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of “actionable” cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MEK1 mutations confer resistance to MEK and B-RAF inhibition

Caroline Emery; Krishna Vijayendran; Marie C. Zipser; Allison M. Sawyer; Lili Niu; Jessica Kim; Charles Hatton; Rajiv Chopra; Patrick A. Oberholzer; Maria B. Karpova; Laura E. MacConaill; Jianming Zhang; Nathanael S. Gray; William R. Sellers; Reinhard Dummer; Levi A. Garraway

Genetic alterations that activate the mitogen-activated protein kinase (MAP kinase) pathway occur commonly in cancer. For example, the majority of melanomas harbor mutations in the BRAF oncogene, which are predicted to confer enhanced sensitivity to pharmacologic MAP kinase inhibition (e.g., RAF or MEK inhibitors). We investigated the clinical relevance of MEK dependency in melanoma by massively parallel sequencing of resistant clones generated from a MEK1 random mutagenesis screen in vitro, as well as tumors obtained from relapsed patients following treatment with AZD6244, an allosteric MEK inhibitor. Most mutations conferring resistance to MEK inhibition in vitro populated the allosteric drug binding pocket or α-helix C and showed robust (≈100-fold) resistance to allosteric MEK inhibition. Other mutations affected MEK1 codons located within or abutting the N-terminal negative regulatory helix (helix A), which also undergo gain-of-function germline mutations in cardio-facio-cutaneous (CFC) syndrome. One such mutation, MEK1(P124L), was identified in a resistant metastatic focus that emerged in a melanoma patient treated with AZD6244. Both MEK1(P124L) and MEK1(Q56P), which disrupts helix A, conferred cross-resistance to PLX4720, a selective B-RAF inhibitor. However, exposing BRAF-mutant melanoma cells to AZD6244 and PLX4720 in combination prevented emergence of resistant clones. These results affirm the importance of MEK dependency in BRAF-mutant melanoma and suggest novel mechanisms of resistance to MEK and B-RAF inhibitors that may have important clinical implications.


Journal of Clinical Oncology | 2012

RAS Mutations Are Associated With the Development of Cutaneous Squamous Cell Tumors in Patients Treated With RAF Inhibitors

Patrick A. Oberholzer; Damien Kee; Piotr Dziunycz; Antje Sucker; Nyam Kamsu-Kom; Robert Jones; Christine Roden; Clinton J. Chalk; Kristin Ardlie; Emanuele Palescandolo; Adriano Piris; Laura E. MacConaill; Caroline Robert; Günther F.L. Hofbauer; Grant A. McArthur; Dirk Schadendorf; Levi A. Garraway

PURPOSE RAF inhibitors are effective against melanomas with BRAF V600E mutations but may induce keratoacanthomas (KAs) and cutaneous squamous cell carcinomas (cSCCs). The potential of these agents to promote secondary malignancies is concerning. We analyzed cSCC and KA lesions for genetic mutations in an attempt to identify an underlying mechanism for their formation. METHODS Four international centers contributed 237 KA or cSCC tumor samples from patients receiving an RAF inhibitor (either vemurafenib or sorafenib; n = 19) or immunosuppression therapy (n = 53) or tumors that developed spontaneously (n = 165). Each sample was profiled for 396 known somatic mutations across 33 cancer-related genes by using a mass spectrometric-based genotyping platform. RESULTS Mutations were detected in 16% of tumors (38 of 237), with five tumors harboring two mutations. Mutations in TP53, CDKN2A, HRAS, KRAS, and PIK3CA were previously described in squamous cell tumors. Mutations in MYC, FGFR3, and VHL were identified for the first time. A higher frequency of activating RAS mutations was found in tumors from patients treated with an RAF inhibitor versus populations treated with a non-RAF inhibitor (21.1% v 3.2%; P < .01), although overall mutation rates between treatment groups were similar (RAF inhibitor, 21.1%; immunosuppression, 18.9%; and spontaneous, 17.6%; P = not significant). Tumor histology (KA v cSCC), tumor site (head and neck v other), patient age (≤ 70 v > 70 years), and sex had no significant impact on mutation rate or type. CONCLUSION Squamous cell tumors from patients treated with an RAF inhibitor have a distinct mutational profile that supports a mechanism of therapy-induced tumorigenesis in RAS-primed cells. Conceivably, cotargeting of MEK together with RAF may reduce or prevent formation of these tumors.


Nature Medicine | 2010

An oncogene–tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-κB

Junxia Min; Alexander Zaslavsky; Giuseppe Fedele; Sara K McLaughlin; Elizabeth E. Reczek; Thomas De Raedt; Isil Guney; David E. Strochlic; Laura E. MacConaill; Rameen Beroukhim; Roderick T. Bronson; Sandra Ryeom; William C. Hahn; Massimo Loda; Karen Cichowski

Metastasis is responsible for the majority of prostate cancer–related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene–tumor suppressor cascade that promotes prostate cancer growth and metastasis by coordinately activating the small GTPase Ras and nuclear factor-κB (NF-κB). Specifically, we show that loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP induces metastatic prostate cancer in an orthotopic mouse tumor model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-κB through distinct domains to promote tumor growth and metastasis, respectively. DAB2IP is suppressed in human prostate cancer, where its expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein histone-lysine N-methyltransferase EZH2 activates Ras and NF-κB and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis.


PLOS Genetics | 2012

Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway

Courtney A. Lovejoy; Wendi Li; Steven Reisenweber; Supawat Thongthip; Joanne Bruno; Titia de Lange; Saurav De; John H.J. Petrini; Patricia Sung; Maria Jasin; Joseph Rosenbluh; Yaara Zwang; Barbara A. Weir; Charlie Hatton; Elena Ivanova; Laura E. MacConaill; Megan Hanna; William C. Hahn; Neal F. Lue; Roger R. Reddel; Yuchen Jiao; Kenneth W. Kinzler; Bert Vogelstein; Nickolas Papadopoulos; Alan K. Meeker

The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT–immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2010

8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC

Nasim Ahmadiyeh; Mark Pomerantz; Chiara Grisanzio; Paula Herman; Li Jia; Vanessa Almendro; Housheng Hansen He; Myles Brown; X. Shirley Liu; Matthew M. Davis; Jennifer L. Caswell; Christine A. Beckwith; Adam Hills; Laura E. MacConaill; Gerhard A. Coetzee; Meredith M. Regan; Matthew L. Freedman

The 8q24 gene desert contains risk loci for multiple epithelial cancers, including colon, breast, and prostate. Recent evidence suggests these risk loci contain enhancers. In this study, data are presented showing that each risk locus bears epigenetic marks consistent with enhancer elements and forms a long-range chromatin loop with the MYC proto-oncogene located several hundred kilobases telomeric and that these interactions are tissue-specific. We therefore propose that the 8q24 risk loci operate through a common mechanism—as tissue-specific enhancers of MYC.


Nature Genetics | 2013

Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations

Priscilla K. Brastianos; Peleg Horowitz; Sandro Santagata; Robert T. Jones; Aaron McKenna; Gad Getz; Keith L. Ligon; Emanuele Palescandolo; Paul Van Hummelen; Matthew Ducar; Alina Raza; Ashwini Sunkavalli; Laura E. MacConaill; Anat Stemmer-Rachamimov; David N. Louis; William C. Hahn; Ian F. Dunn; Rameen Beroukhim

Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of all meningiomas, but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas had simple genomes, with fewer mutations, rearrangements and copy-number alterations than reported in other tumors in adults. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements, including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers in an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (p.Glu17Lys) and SMO (p.Trp535Leu) and exhibited immunohistochemical evidence of activation of these pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets.

Collaboration


Dive into the Laura E. MacConaill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neal I. Lindeman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Garcia

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lynette M. Sholl

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge