Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura E. McBreairty is active.

Publication


Featured researches published by Laura E. McBreairty.


Current Opinion in Clinical Nutrition and Metabolic Care | 2013

The nutritional burden of methylation reactions.

Robert F. Bertolo; Laura E. McBreairty

Purpose of reviewMethyl group metabolism is a metabolically demanding process that has significant nutritional implications. Methionine is required not only for protein synthesis but also as the primary source of methyl groups. However, demethylated methionine can be remethylated by methyl groups from methylneogenesis (via folate) and betaine (synthesized from choline). This review discusses the impact of methylation precursors and products on the methionine requirement. Recent findingsRecent evidence has clearly demonstrated that transmethylation reactions can consume a significant proportion of the flux of methionine. In particular, synthesis of creatine and phosphatidylcholine consume most methyl groups and their dietary provision could spare methionine. Importantly, methionine can become limiting for protein and phosphatidylcholine synthesis when creatine synthesis is upregulated. Other research has shown that betaine and choline seem to be more effective than folate at reducing hyperhomocysteinemia and impacting cardiovascular outcomes suggesting they may be limiting. SummaryIt appears that methyl groups can become limiting when dietary supply is inadequate or if transmethylation reactions are upregulated. These situations can impact methionine availability for protein synthesis, which can reduce growth. The methionine requirement can likely be spared by methyl donor and methylated product supplementation.


PLOS ONE | 2015

Guanidinoacetate Is More Effective than Creatine at Enhancing Tissue Creatine Stores while Consequently Limiting Methionine Availability in Yucatan Miniature Pigs

Laura E. McBreairty; Jason L. Robinson; Kayla R. Furlong; Janet A. Brunton; Robert F. Bertolo

Creatine (Cr) is an important high-energy phosphate buffer in tissues with a high energy demand such as muscle and brain and is consequently a highly consumed nutritional supplement. Creatine is synthesized via the S-adenosylmethionine (SAM) dependent methylation of guanidinoacetate (GAA) which is not regulated by a feedback mechanism. The first objective of this study was to determine the effectiveness of GAA at increasing tissue Cr stores. Because SAM is required for other methylation reactions, we also wanted to determine whether an increased creatine synthesis would lead to a lower availability of methyl groups for other methylated products. Three month-old pigs (n = 18) were fed control, GAA- or Cr-supplemented diets twice daily. On day 18 or 19, anesthesia was induced 1–3 hours post feeding and a bolus of [methyl-3H]methionine was intravenously infused. After 30 minutes, the liver was analyzed for methyl-3H incorporation into protein, Cr, phosphatidylcholine (PC) and DNA. Although both Cr and GAA led to higher hepatic Cr concentration, only supplementation with GAA led to higher levels of muscle Cr (P < 0.05). Only GAA supplementation resulted in lower methyl-3H incorporation into PC and protein as well as lower hepatic SAM concentration compared to the controls, suggesting that Cr synthesis resulted in a limited methyl supply for PC and protein synthesis (P < 0.05). Although GAA is more effective than Cr at supporting muscle Cr accretion, further research should be conducted into the long term consequences of a limited methyl supply and its effects on protein and PC homeostasis.


Applied Physiology, Nutrition, and Metabolism | 2016

The dynamics of methionine supply and demand during early development.

Laura E. McBreairty; Robert F. Bertolo

Methionine is an indispensable amino acid that, when not incorporated into protein, is converted into the methyl donor S-adenosylmethionine as entry into the methionine cycle. Following transmethylation, homocysteine is either remethylated to reform methionine or irreversibly trans-sulfurated to form cysteine. Methionine flux to transmethylation and to protein synthesis are both high in the neonate and this review focuses on the dynamics of methionine supply and demand during early development, when growth requires expansion of pools of protein and transmethylation products such as creatine and phosphatidylcholine (PC). The nutrients folate and betaine (derived from choline) donate a methyl group during remethylation, providing an endogenous supply of methionine to meet the methionine demand. During early development, variability in the dietary supply of these methionine cycle-related nutrients can affect both the supply and the demand of methionine. For example, a greater need for creatine synthesis can limit methionine availability for protein and PC synthesis, whereas increased availability of remethylation nutrients can increase protein synthesis if dietary methionine is limiting. Moreover, changes to methyl group availability early in life can lead to permanent changes in epigenetic patterns of DNA methylation, which have been implicated in the early origins of adult disease phenomena. This review aims to summarize how changes in methyl supply and demand can affect the availability of methionine for various functions and highlights the importance of variability in methionine-related nutrients in the infant diet.


Journal of Nutritional Biochemistry | 2016

Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet

Jason L. Robinson; Laura E. McBreairty; Edward Randell; Janet A. Brunton; Robert F. Bertolo

Methionine is required for protein synthesis and provides a methyl group for >50 critical transmethylation reactions including creatine and phosphatidylcholine synthesis as well as DNA and protein methylation. However, the availability of methionine depends on dietary sources as well as remethylation of demethylated methionine (i.e., homocysteine) by the dietary methyl donors folate and choline (via betaine). By restricting dietary methyl supply, we aimed to determine the extent that dietary methyl donors contribute to methionine availability for protein synthesis and transmethylation reactions in neonatal piglets. Piglets 4-8 days of age were fed a diet deficient (MD-) (n=8) or sufficient (MS+) (n=7) in folate, choline and betaine. After 5 days, dietary methionine was reduced to 80% of requirement in both groups to elicit a response. On day 8, animals were fed [(3)H-methyl]methionine for 6h to measure methionine partitioning into hepatic protein, phosphatidylcholine, creatine and DNA. MD- feeding reduced plasma choline, betaine and folate (P<.05) and increased homocysteine ~3-fold (P<.05). With MD- feeding, hepatic phosphatidylcholine synthesis was 60% higher (P<.05) at the expense of creatine synthesis, which was 30% lower during MD- feeding (P<.05); protein synthesis as well as DNA and protein methylation were unchanged. In the liver, ~30% of dietary label was traced to phosphatidylcholine and creatine together, with ~50% traced to methylation of proteins and ~20% incorporated in synthesized protein. Dietary methyl donors are integral to neonatal methionine requirements and can affect methionine availability for transmethylation pathways.


Journal of Nutrition | 2013

Partitioning of [Methyl-3H]Methionine to Methylated Products and Protein Is Altered during High Methyl Demand Conditions in Young Yucatan Miniature Pigs

Laura E. McBreairty; Ross A. McGowan; Janet A. Brunton; Robert F. Bertolo

Methionine is the main source of methyl groups that are partitioned to synthesize various methylated products including creatine, phosphatidylcholine (PC), and methylated DNA. Whether increased methylation of 1 product can divert methionine from protein synthesis or other methylation products was the aim of this experiment. We used an excess of guanidinoacetate (GAA) to synthesize creatine to create a higher demand for available methyl groups in normal-weight (NW) (n = 10) and intrauterine growth-restricted (IUGR) (n = 10) piglets. Anesthetized piglets (15-18 d old) were intraportally infused with either GAA or saline for 2 h. A bolus of l-[methyl-(3)H]methionine was intraportally infused at 1 h, and hepatic metabolites were analyzed for methyl-(3)H incorporation 1 h later. Overall, 50-75% of label was recovered in creatine and PC with negligible amounts in DNA. In both NW and IUGR piglets, excess GAA led to an ≈ 80-120% increase in methyl incorporation into creatine (P < 0.05) with a concomitant decrease by ≈ 75-85% in methyl incorporation into PC (P < 0.05) as well as a 40% decrease in methyl incorporation into protein (P < 0.05), suggesting methyl groups were limited for PC synthesis and that methionine was diverted from protein synthesis. Compared with NW piglets, IUGR piglets had lower methyl incorporation into PC (P < 0.05), but not DNA or protein, suggesting IUGR affects methyl metabolism and could potentially impact lipid metabolism. The partitioning of methionine is sensitive to methyl supply in neonates, which has implications in infant diet composition and growth.


Nutrients | 2018

A Comparison of a Pulse-Based Diet and the Therapeutic Lifestyle Changes Diet in Combination with Exercise and Health Counselling on the Cardio-Metabolic Risk Profile in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial

Maryam Kazemi; Laura E. McBreairty; Donna R. Chizen; Roger Pierson; Philip D. Chilibeck; Gordon A. Zello

We compared the effects of a low-glycemic index pulse-based diet, containing lentils, beans, split peas, and chickpeas, to the Therapeutic Lifestyle Changes (TLC) diet on cardio-metabolic measures in women with polycystic ovary syndrome (PCOS). Ninety-five women (18–35 years) enrolled in a 16-week intervention; 30 women in the pulse-based and 31 in the TLC groups completed the study. Women participated in aerobic exercise training (minimum 5 days/week for 45 min/day) and were counselled (monthly) about PCOS and lifestyle modification. Women underwent longitudinal follow-up post-intervention. The pulse-based group had a greater reduction in total area under the curve for insulin response to a 75-g oral glucose tolerance test (mean change ± SD: −121.0 ± 229.9 vs. −27.4 ± 110.2 µIU/mL × min; p = 0.05); diastolic blood pressure (−3.6 ± 6.7 vs. −0.2 ± 6.7 mmHg, p = 0.05); triglyceride (−0.2 ± 0.6 vs. 0.0 ± 0.5 mmol/L, p = 0.04); low-density lipoprotein cholesterol (−0.2 ± 0.4 vs. −0.1 ± 0.4 mmol/L, p = 0.05); total cholesterol/high-density lipoprotein cholesterol (TC/HDL-C; −0.4 ± 0.4 vs. 0.1 ± 0.4, p < 0.001); and a greater increase in HDL-C (0.1 ± 0.2 vs. −0.1 ± 0.2 mmol/L, p < 0.01) than the TLC group. Decreased TC/HDL-C (p = 0.02) at six-month and increased HDL-C and decreased TC/HDL-C (p ≤ 0.02) at 12-month post-intervention were maintained in the pulse-based group. A pulse-based diet may be more effective than the TLC diet at improving cardio-metabolic disease risk factors in women with PCOS. Trial registration: CinicalTrials.gov identifier, NCT01288638.


Journal of Nutritional Biochemistry | 2018

Betaine or folate can equally furnish remethylation to methionine and increase transmethylation in methionine-restricted neonates

Jason L. Robinson; Laura E. McBreairty; Edward Randell; Scott V. Harding; Renee K. Bartlett; Janet A. Brunton; Robert F. Bertolo

Methionine partitioning between protein turnover and a considerable pool of transmethylation precursors is a critical process in the neonate. Transmethylation yields homocysteine, which is either oxidized to cysteine (i.e., transsulfuration), or is remethylated to methionine by folate- or betaine- (from choline) mediated remethylation pathways. The present investigation quantifies the individual and synergistic importance of folate and betaine for methionine partitioning in neonates. To minimize whole body remethylation, 4-8-d-old piglets were orally fed an otherwise complete diet without remethylation precursors folate, betaine and choline (i.e. methyl-deplete, MD-) (n=18). Dietary methionine was reduced from 0.3 to 0.2 g/(kg∙d) on day-5 to limit methionine availability, and methionine kinetics were assessed during a gastric infusion of [13C1]methionine and [2H3-methyl]methionine. Methionine kinetics were reevaluated 2 d after pigs were rescued with either dietary folate (38 μg/(kg∙d)) (MD + F) (n=6), betaine (235 mg/(kg∙d)) (MD + B) (n=6) or folate and betaine (MD + FB) (n=6). Plasma choline, betaine, dimethylglycine (DMG), folate and cysteine were all diminished or undetectable after 7 d of methyl restriction (P<.05). Post-rescue, plasma betaine and folate concentrations responded to their provision, and homocysteine and glycine concentrations were lower (P<.05). Post-rescue, remethylation and transmethylation rates were~70-80% higher (P<.05), and protein breakdown was spared by 27% (P<.05). However, rescue did not affect transsulfuration (oxidation), plasma methionine, protein synthesis or protein deposition (P>.05). There were no differences among rescue treatments; thus betaine was as effective as folate at furnishing remethylation. Supplemental betaine or folate can furnish the transmethylation requirement during acute protein restriction in the neonate.


Journal of Clinical Densitometry | 2018

Women With Polycystic Ovary Syndrome Have Comparable Hip Bone Geometry to Age-Matched Control Women

Laura E. McBreairty; Gordon A. Zello; Julianne J. Gordon; Shani Serrao; Roger Pierson; Donna R. Chizen; Philip D. Chilibeck

Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting women of reproductive age manifesting with polycystic ovaries, menstrual irregularities, hyperandrogenism, hirsutism, and insulin resistance. The oligomenorrhea and amenorrhea characteristic to PCOS are associated with low bone mineral density (BMD); conversely, the hyperandrogenism and hyperinsulinemia may elicit a protective effect on BMD. As bone geometric properties provide additional information about bone strength, the objective of this study was to compare measures of hip geometry in women with PCOS to a healthy female population. Using dual-energy X-ray absorptiometry, BMD and measures of hip geometry were determined in women with PCOS (n = 60) and healthy controls (n = 60) aged 18-35 years. Clinical biochemical measures were also determined in women with PCOS. Measures of hip geometry, including cross-sectional area, cross-sectional moment of inertia, subperiosteal width (SPW), and section modulus, were similar between groups following correction for body mass index (BMI) (all p > 0.05) with intertrochanter SPW significantly lower in women with PCOS (p < 0.05). BMI-corrected whole body BMD as well as the lumbar spine and regions of proximal femur were also comparable between groups. In women with PCOS, BMI-corrected correlations were found between insulin and femoral shaft SPW (r = 0.322, p < 0.05), glucose and femoral neck (r = 0.301, p < 0.05), and trochanter BMD (0.348, p < 0.05), as well as between testosterone and femoral neck BMD (0.376, p < 0.05) and narrow neck cross-sectional area (0.306, p < 0.05). This study demonstrates that women with PCOS may have compromised intertrochanter SPW while oligomenorrhea appears to have no detrimental effect on bone density or geometry in women with PCOS.


Handbook of Lipids in Human Function#R##N#Fatty Acids | 2016

Fat Metabolism During Exercise and Dietary Interventions for Enhancing Fat Metabolism and Athletic Performance

Stephen M. Cornish; Laura E. McBreairty; Philip D. Chilibeck; Gordon A. Zello

Fat is primarily used as an energy source during low-to-moderate intensity exercise; however, evidence suggests exercise at high intensity may also be effective at reducing fat mass. Training affords additional benefit during high- and moderate-intensity exercise as trained individuals have a higher fat oxidation at these intensities compared to untrained individuals. Although fat consumption above the recommend 20–35% of calories leads to higher fat oxidation, there appears to be no performance benefit in trained individuals and an increased dietary fat intake negatively affects performance in those who are untrained. Alternatively, when combined with strength training, supplementation with fatty acids such as conjugated linoleic acid demonstrates benefits including improvements to body composition. Other factors such as age and sex can also further influence fat metabolism and fatty acid utilization.


Journal of Nutritional Biochemistry | 2012

Intrauterine growth restriction leads to changes in sulfur amino acid metabolism, but not global DNA methylation, in Yucatan miniature piglets.

Dylan S. MacKay; Julie D. Brophy; Laura E. McBreairty; Ross A. McGowan; Robert F. Bertolo

Collaboration


Dive into the Laura E. McBreairty's collaboration.

Top Co-Authors

Avatar

Robert F. Bertolo

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Gordon A. Zello

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Donna R. Chizen

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet A. Brunton

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Roger Pierson

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Jason L. Robinson

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Edward Randell

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Shani Serrao

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Julianne Rooke

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge