Laura E. Phelps
Midwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura E. Phelps.
Physiology & Behavior | 2012
Jacob D. Peuler; Melissa-Ann L. Scotti; Laura E. Phelps; Neal McNeal; Angela J. Grippo
Humans with depression show impaired endothelium-dependent vasodilation; one recent demonstration of which was in the form of a reduced acetylcholine (ACh)-induced relaxation of adrenergically-precontracted small arteries biopsied from older depressed patients. Results from such uses of ACh in general have been validated as the most predictive marker of endothelium-related cardiovascular diseases. Accordingly, we examined vascular reactivity to ACh in the socially isolated prairie vole, a new animal model relevant to human depression and cardiovascular disease. Thoracic aortas were carefully dissected from female prairie voles after one month of social isolation (versus pairing with a sibling). Only aortas that contracted to the adrenergic agent phenylephrine (PE) and then relaxed to ACh were evaluated. Among those, ACh-induced relaxations were significantly reduced by social isolation (p<0.05), with maximum relaxation reaching only 30% (of PE-induced precontraction) compared to 47% in aortas from paired (control) animals. Experimental removal of the endothelium from an additional set of aortic tissues abolished all ACh relaxations including that difference. In these same tissues, maximally-effective concentrations of the nitric oxide-donor nitroprusside still completely relaxed all PE-induced precontraction of the endothelial-free smooth muscle, and to the same degree in tissues from isolated versus paired animals. Finally, in the absence of PE-induced precontraction ACh did not relax but rather contracted aortic tissues, and to a significantly greater extent in tissues from socially isolated animals if the endothelium was intact (p<0.05). Thus, social isolation in the prairie vole may (1) impair normal release of protective anti-atherosclerotic factors like nitric oxide from the vascular endothelium (without altering the inherent responsiveness of the vascular smooth muscle to such factors) and (2) cause the endothelium to release contracting factors. To our knowledge this is the first demonstration of this phenomenon in an animal model of depression induced solely by social isolation. These findings have implications for understanding mechanisms involved in depression and cardiovascular disease.
Journal of Smooth Muscle Research | 2015
Jacob D. Peuler; Laura E. Phelps
Type 2 diabetic men commonly experience erectile dysfunction for which phosphodiesterase-5 (PDE5) inhibitors like sildenafil (Viagra) are often recommended. By preventing degradation of cyclic guanosine monophosphate (cGMP) in vascular smooth muscle, these inhibitors also enhance arterial vasorelaxant effects of nitric oxide donors (which stimulate cGMP synthesis). In the present work, we confirmed this enhancing effect after co-administration of sildenafil with nitroprusside to freshly-isolated rat tail arterial tissues. However, in the same tissues we also observed that sildenafil does not enhance but rather attenuates vasorelaxant effects of three commonly-used antidiabetic drugs, i.e. the biguanide metformin and the thiazolidinediones pioglitazone and rosiglitazone. Indeed, sildenafil completely blocked vasorelaxant effects of low concentrations of these drugs. In addition, we found that this same novel anti-vasorelaxant interaction of sildenafil with these agents was abolished by either 1) omitting extracellular glucose or 2) inhibiting specific smooth muscle glycolytic pathways; pathways known to preferentially utilize extracellular glucose to fuel certain adenosine triphosphate (ATP)-dependent ion transporters: e.g. ATP-sensitive K channels, sarcoplasmic reticulum Ca-ATPase, plasma membrane Ca-ATPase and Na/K-ATPase. Accordingly, we suspect that altered activity of one or more of these ion transporters mediates the observed attenuating (anti-vasorelaxant) interaction of sildenafil with the antidiabetic drugs. The present results are relevant because hypertension is so common and difficult to control in Type 2 diabetes. The present data suggest that sildenafil might interfere with the known antihypertensive potential of metformin and the thiazolidinediones. However, they do not suggest that it will interact with them to cause life-threatening episodes of severe hypotension, as can occur when it is co-administered with nitrates.
Journal of Smooth Muscle Research | 2016
Sayra M. Stom; Laura E. Phelps; Jacob D. Peuler
Our aims were to determine 1) if resveratrols vasorelaxant action is greater in the distal (resistance) versus proximal (conductance) portion of the rat tail artery, and 2) if it can be blocked by agents known to block different potassium (K) channels in arterial smooth muscle. We found that its half-maximally effective concentration values were essentially identical (25 ± 3 versus 27 ± 3 μM) for relaxing adrenergically-precontracted rings prepared from distal versus proximal tissues. This does not confirm a previous report of greater relaxation in resistance versus conductance arteries. We also found that its relaxation could not be blocked by any of seven different K channel blockers. However, we uncovered a novel unanticipated action not yet reported. In half our arterial ring preparations, resveratrol transiently enhanced adrenergically-induced precontractions beginning well before its sustained relaxant effect became apparent. This action provides the first reasonable explanation for previously unexplained increases in arterial pressures observed during acute intravenous administration of resveratrol to animal models of traumatic ischemic tissue injury, in which hypotension is often present and in need of correction. Also unanticipated, this same transient enhancement of adrenergic contraction was notably inhibited by some of the same K channel blockers (particularly tetraethylammonium and glibenclamide) that failed to influence its relaxant effect. Although we do not rule out smooth muscle as a possible site for such a paradoxical finding, we suspect resveratrol could also be acting on K-selective mechano-sensitive ion channels located in the endothelium where they may participate in release of contracting factors.
Physiological Reports | 2018
Phillip G. Kopf; Laura E. Phelps; Chad Schupbach; Alan Kim Johnson; Jacob D. Peuler
Vascular reactivity was evaluated in three separate arteries isolated from rats after angiotensin II (Ang II) was infused chronically in two separate experiments, one using a 14‐day high, slow‐pressor dose known to produce hypertension and the other using a 7‐day low, subpressor but hypertensive‐sensitizing dose. There were three new findings. First, there was no evidence of altered vascular reactivity in resistance arteries that might otherwise explain the hypertension due to the high Ang II or the hypertensive‐sensitizing effect of the low Ang II dose. Second, the high Ang II dose exerted a novel differential effect on arterial contractile responsiveness to the sympathetic neurotransmitter, norepinephrine, depending on the level of sympathetic innervation. It clearly enhanced that responsiveness in the sparsely innervated aorta but not in small mesenteric resistance arteries or the proximal (conductance) portion of the caudal artery, both of which are densely innervated. This suggests that the increased expression of alpha adrenergic receptors after long‐term exposure to Ang II as previously reported for aortic smooth muscle, is prevented in densely innervated arteries, likely due to long‐term Ang II‐mediated increase in sympathetic neural traffic to those vessels. Third, the same high dose of Ang II impaired aortic relaxation in response to the nitric oxide (NO) donor nitroprusside without impairing aortic endothelium‐dependent relaxation. NO is the main relaxing substance released by aortic endothelium. Accordingly, it is possible that this dose of Ang II is also associated with enhanced release of and/or enhanced smooth muscle responsiveness to other endothelial relaxing substances in a compensatory capacity.
Journal of Smooth Muscle Research | 2010
Laura E. Phelps; Jacob D. Peuler
Metabolism-clinical and Experimental | 2004
Jacob D. Peuler; R.K.N Warfield; Laura E. Phelps
The FASEB Journal | 2006
Jacob D. Peuler; Laura E. Phelps
The FASEB Journal | 2015
Jacob D. Peuler; Sayra M. Stom; Laura E. Phelps
The FASEB Journal | 2014
Jacob D. Peuler; Patrick Murphy; Laura E. Phelps
The FASEB Journal | 2012
Angela J. Grippo; Jacob D. Peuler; Laura E. Phelps; Melissa-Ann L. Scotti; Neal McNeal