Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Emionite is active.

Publication


Featured researches published by Laura Emionite.


Science Translational Medicine | 2012

Fasting Cycles Retard Growth of Tumors and Sensitize a Range of Cancer Cell Types to Chemotherapy

Changhan Lee; Lizzia Raffaghello; Sebastian Brandhorst; Fernando Safdie; Giovanna Bianchi; Alejandro Martin-Montalvo; Vito Pistoia; Min Wei; Saewon Hwang; Annalisa Merlino; Laura Emionite; Rafael de Cabo; Valter D. Longo

Short-term starvation increases the effectiveness of chemotherapy against a wide range of tumor cell types. Fasting: Good for You, Bad for Tumors Many promising cancer drugs being developed will require years to become approved by regulatory bodies and, in most cases, will only be effective for a fraction of patients with specific types of cancer. It is therefore important to develop broader, complementary strategies that can be translated rapidly into effective therapies. Two to 4 days of fasting before chemotherapy treatment is safe and protect animals, and possibly humans, against the side effects of chemotherapy. Here, cycles of fasting for 2 days in the absence of other treatments are shown to delay the progression of several tumor types in mice and, in some cases, to be as effective as toxic chemotherapy drugs. However, the combination of fasting and chemotherapy was much more effective than either alone and delayed the progression of a variety of tumors, including breast cancer and glioma, reduced the number of organs affected by melanoma metastases, and promoted long-term cancer-free survival in up to 40% of mice with neuroblastomas. In mice injected with human breast and ovarian cancer cells, fasting cycles promoted survival extension by protecting the mice from chemotherapy while causing a strong inhibition of tumor progression. Experiments in simple organisms, human cells, and mice indicated that these effects of fasting were caused by changes inside and outside cells that increased the death of tumor but not normal cells, a process termed differential stress sensitization. Although clinical trials testing the effect of fasting in cancer treatment are still in the early stages, they suggest that fasting cycles may boost the efficacy of chemotherapeutic agents and could be as effective as chemotherapy drugs in the killing of specific tumor cells. Short-term starvation (or fasting) protects normal cells, mice, and potentially humans from the harmful side effects of a variety of chemotherapy drugs. Here, we show that treatment with starvation conditions sensitized yeast cells (Saccharomyces cerevisiae) expressing the oncogene-like RAS2val19 to oxidative stress and 15 of 17 mammalian cancer cell lines to chemotherapeutic agents. Cycles of starvation were as effective as chemotherapeutic agents in delaying progression of different tumors and increased the effectiveness of these drugs against melanoma, glioma, and breast cancer cells. In mouse models of neuroblastoma, fasting cycles plus chemotherapy drugs—but not either treatment alone—resulted in long-term cancer-free survival. In 4T1 breast cancer cells, short-term starvation resulted in increased phosphorylation of the stress-sensitizing Akt and S6 kinases, increased oxidative stress, caspase-3 cleavage, DNA damage, and apoptosis. These studies suggest that multiple cycles of fasting promote differential stress sensitization in a wide range of tumors and could potentially replace or augment the efficacy of certain chemotherapy drugs in the treatment of various cancers.


Cell Cycle | 2013

Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer

Cecilia Marini; Barbara Salani; Michela Massollo; Adriana Amaro; Alessia Isabella Esposito; Anna Maria Orengo; Selene Capitanio; Laura Emionite; Mattia Riondato; Gianluca Bottoni; Cinzia Massara; Simona Boccardo; Marina Fabbi; Cristina Campi; Silvia Ravera; Giovanna Angelini; Silvia Morbelli; Michele Cilli; Renzo Cordera; Mauro Truini; Davide Maggi; Ulrich Pfeffer; Gianmario Sambuceti

Emerging evidence suggests that metformin, a widely used anti-diabetic drug, may be useful in the prevention and treatment of different cancers. In the present study, we demonstrate that metformin directly inhibits the enzymatic function of hexokinase (HK) I and II in a cell line of triple-negative breast cancer (MDA-MB-231). The inhibition is selective for these isoforms, as documented by experiments with purified HK I and II as well as with cell lysates. Measurements of 18F-fluoro-deoxyglycose uptake document that it is dose- and time-dependent and powerful enough to virtually abolish glucose consumption despite unchanged availability of membrane glucose transporters. The profound energetic imbalance activates phosphorylation and is subsequently followed by cell death. More importantly, the “in vivo” relevance of this effect is confirmed by studies of orthotopic xenografts of MDA-MB-231 cells in athymic (nu/nu) mice. Administration of high drug doses after tumor development caused an evident tumor necrosis in a time as short as 48 h. On the other hand, 1 mo metformin treatment markedly reduced cancer glucose consumption and growth. Taken together, our results strongly suggest that HK inhibition contributes to metformin therapeutic and preventive potential in breast cancer.


Clinical Cancer Research | 2010

Tumor Regression and Curability of Preclinical Neuroblastoma Models by PEGylated SN38 (EZN-2208), a Novel Topoisomerase I Inhibitor

Fabio Pastorino; Monica Loi; Puja Sapra; Pamela Becherini; Michele Cilli; Laura Emionite; Domenico Ribatti; Lee M. Greenberger; Ivan D. Horak; Mirco Ponzoni

Purpose: Treatment of neuroblastoma is successful in less than half of patients with high-risk disease. The antitumor activity of a water soluble pegylated SN38 drug conjugate, EZN-2208, was compared with CPT-11 (a prodrug for SN38) in preclinical models of human neuroblastoma. Experimental Design: The in vitro cytotoxicity of EZN-2208 was tested by counting trypan blue dye– and Annexin V–positive cells, whereas its therapeutic efficacy was evaluated, in terms of survival, and antitumor and antiangiogenic activities, in s.c. luciferase-transfected, pseudometastatic, and orthotopic neuroblastoma animal models. Results: EZN-2208 was about 100-fold more potent than CPT-11 in vitro, by inducing apoptosis/necrosis and p53 expression and by reducing hypoxia-inducible factor (HIF)-1α/HIF-2α expression. EZN-2208 gave superior antitumor effects compared with CPT-11 in neuroblastoma xenografts. EZN-2208 treatment always resulted in lack of tumor detection at the end of trials whereas only small therapeutic effects were observed with CPT-11, as assessed by luciferase assay or tumor size, or even by staining histologic sections of tumors with antibodies recognizing neuroblastoma cells and cell proliferation. In a neuroblastoma model resistant to doxorubicin, cisplatin, vincristine, fenretinide, and topotecan, EZN-2208 induced 100% curability. It also blocked tumor relapse after topotecan-vincristine-doxorubicin combined treatment. Mechanistic experiments showed statistically significantly enhanced terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling and Histone H2ax staining as well as decreased vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, and MMP-9 expression in tumors removed from EZN-2208–treated mice and radiating vessels invading the tumor implanted onto the chorioallantoic membranes. Conclusions: EZN-2208 should be considered a most promising novel antineuroblastoma agent. An ongoing phase I study in pediatric patients should identify the optimal dose for a phase II study. Clin Cancer Res; 16(19); 4809–21. ©2010 AACR.


PLOS ONE | 2011

Synergistic Interactions between HDAC and Sirtuin Inhibitors in Human Leukemia Cells

Michele Cea; Debora Soncini; Floriana Fruscione; Lizzia Raffaghello; Anna Garuti; Laura Emionite; Eva Moran; Mirko Magnone; Gabriele Zoppoli; Daniele Reverberi; Irene Caffa; Annalisa Salis; Antonia Cagnetta; Micaela Bergamaschi; Salvatore Casciaro; Ivana Pierri; Gianluca Damonte; Filippo Ansaldi; Marco Gobbi; Vito Pistoia; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni

Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD+-independent HDACs are an established therapeutic target, the relevance of NAD+-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.


Cancer Research | 2015

Accelerated Tumor Progression in Mice Lacking the ATP Receptor P2X7

Elena Adinolfi; Marina Capece; Alessia Franceschini; Simonetta Falzoni; Annalisa Giuliani; A. Rotondo; AlbaClara Sarti; Massimo Bonora; Susanne Syberg; Domenica Corigliano; Paolo Pinton; Niklas Rye Jørgensen; Luigi Abelli; Laura Emionite; Lizzia Raffaghello; Vito Pistoia; Francesco Di Virgilio

The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion.


Cell Death and Disease | 2017

ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment.

Giovanna Bianchi; Marta Vuerich; Patrizia Pellegatti; D Marimpietri; Laura Emionite; Ilaria Marigo; Vincenzo Bronte; F Di Virgilio; Vito Pistoia; Lizzia Raffaghello

Tumor microenvironment of solid tumors is characterized by a strikingly high concentration of adenosine and ATP. Physiological significance of this biochemical feature is unknown, but it has been suggested that it may affect infiltrating immune cell responses and tumor progression. There is increasing awareness that many of the effects of extracellular ATP on tumor and inflammatory cells are mediated by the P2X7 receptor (P2X7R). Aim of this study was to investigate whether: (i) extracellular ATP is a component of neuroblastoma (NB) microenvironment, (ii) myeloid-derived suppressor cells (MDSCs) express functional P2X7R and (iii) the ATP/P2X7R axis modulates MDSC functions. Our results show that extracellular ATP was detected in NB microenvironment in amounts that increased in parallel with tumor progression. The percentage of CD11b+/Gr-1+ cells was higher in NB-bearing mice compared with healthy animals. Within the CD11b/Gr-1+ population, monocytic MDSCs (M-MDSCs) produced higher levels of reactive oxygen species (ROS), arginase-1 (ARG-1), transforming growth factor-β1 (TGF-β1) and stimulated more potently in vivo tumor growth, as compared with granulocytic MDSCs (G-MDSCs). P2X7R of M-MDSCs was localized at the plasma membrane, coupled to increased functionality, upregulation of ARG-1, TGF-β1 and ROS. Quite surprisingly, the P2X7R in primary MDSCs as well as in the MSC-1 and MSC-2 lines was uncoupled from cytotoxicity. This study describes a novel scenario in which MDSC immunosuppressive functions are modulated by the ATP-enriched tumor microenvironment.


Molecular Therapy | 2011

Neuroblastoma-targeted Nanoparticles Entrapping siRNA Specifically Knockdown ALK

Daniela Di Paolo; Chiara Brignole; Fabio Pastorino; R. Carosio; Alessia Zorzoli; Marzia Rossi; Monica Loi; Gabriella Pagnan; Laura Emionite; Michele Cilli; Silvia Bruno; Roberto Chiarle; Theresa M. Allen; Mirco Ponzoni; Patrizia Perri

RNA interference molecules have some advantages as cancer therapeutics, including a proved efficacy on both wild-type (WT) and mutated transcripts and an extremely high sequence-specificity. The most significant hurdle to be overcome if exogenous small interfering RNAs (siRNA) is to be used therapeutically is the specific, effective, nontoxic delivery of siRNA to its intracellular site of action. At present, human applications are confined almost exclusively to targets within the liver, where the delivery systems naturally accumulate, and extra-hepatic targets remain a challenge. Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that has recently been shown to contribute to the cell growth and progression of human neuroblastoma (NB). We investigated its potential as a therapeutic target in NB by generating anti-GD₂-targeted nanoparticles that carry ALK-directed siRNA, which are specifically and efficiently delivered to GD₂-expressing NB cells. Relative to free ALK-siRNA, anti-GD₂-targeted liposomal formulations of ALK-siRNA had low plasma clearance, increased siRNA stability, and improved binding, uptake, silencing and induction of cell death, and specificity for NB cells. In NB xenografts, intravenous (i.v.) injection of the targeted ALK-siRNA liposomes showed gene-specific antitumor activity with no side effects. ALK-selective siRNA entrapped in anti-GD₂-targeted nanoparticles is a promising new modality for NB treatment.


Molecular Therapy | 2011

Selective Therapeutic Targeting of the Anaplastic Lymphoma Kinase With Liposomal siRNA Induces Apoptosis and Inhibits Angiogenesis in Neuroblastoma.

Daniela Di Paolo; Chiara Ambrogio; Fabio Pastorino; Chiara Brignole; Cinzia Martinengo; R. Carosio; Monica Loi; Gabriella Pagnan; Laura Emionite; Michele Cilli; Domenico Ribatti; Theresa M. Allen; Roberto Chiarle; Mirco Ponzoni; Patrizia Perri

The anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is involved in the pathogenesis of different types of human cancers, including neuroblastoma (NB). In NB, ALK overexpression, or point mutations, are associated with poor prognosis and advanced stage disease. Inhibition of ALK kinase activity by small-molecule inhibitors in lung cancers carrying ALK translocations has shown therapeutic potential. However, secondary mutations may occur that, generate tumor resistance to ALK inhibitors. To overcome resistance to ALK inhibitors in NB, we adopted an alternative RNA interference (RNAi)-based therapeutic strategy that is able to knockdown ALK, regardless of its genetic status [mutated, amplified, wild-type (WT)]. NB cell lines, transduced by lentiviral short hairpin RNA (shRNA), showed reduced proliferation and increased apoptosis when ALK was knocked down. In mice, a nanodelivery system for ALK-specific small interfering RNA (siRNA), based on the conjugation of antibodies directed against the NB-selective marker GD(2) to liposomes, showed strong ALK knockdown in vivo in NB cells, which resulted in cell growth arrest, apoptosis, and prolonged survival. ALK knockdown was associated with marked reductions in vascular endothelial growth factor (VEGF) secretion, blood vessel density, and matrix metalloproteinases (MMPs) expression in vivo, suggesting a role for ALK in NB-induced neoangiogenesis and tumor invasion, confirming this gene as a fundamental oncogene in NB.


BMC Cancer | 2010

Mutually exclusive expression of DLX2 and DLX5/6 is associated with the metastatic potential of the human breast cancer cell line MDA-MB-231

Monica Morini; Simonetta Astigiano; Yorick Gitton; Laura Emionite; Valentina Mirisola; Giovanni Levi; Ottavia Barbieri

BackgroundThe DLX gene family encodes for homeobox transcription factors involved in the control of morphogenesis and tissue homeostasis. Their expression can be regulated by Endothelin1 (ET1), a peptide associated with breast cancer invasive phenotype. Deregulation of DLX gene expression was found in human solid tumors and hematologic malignancies. In particular, DLX4 overexpression represents a possible prognostic marker in ovarian cancer. We have investigated the role of DLX genes in human breast cancer progression.MethodsMDA-MB-231 human breast carcinoma cells were grown in vitro or injected in nude mice, either subcutaneously, to mimic primary tumor growth, or intravenously, to mimic metastatic spreading. Expression of DLX2, DLX5 and DLX6 was assessed in cultured cells, either treated or not with ET1, tumors and metastases by RT-PCR. In situ hybridization was used to confirm DLX gene expression in primary tumors and in lung and bone metastases. The expression of DLX2 and DLX5 was evaluated in 408 primary human breast cancers examining the GSE1456 and GSE3494 microarray datasets. Kaplan-Meier estimates for disease-free survival were calculated for the patients grouped on the basis of DLX2/DLX5 expression.ResultsBefore injection, or after subcutaneous growth, MDA-MB-231 cells expressed DLX2 but neither DLX5 nor DLX6. Instead, in bone and lung metastases resulting from intravenous injection we detected expression of DLX5/6 but not of DLX2, suggesting that DLX5/6 are activated during metastasis formation, and that their expression is alternative to that of DLX2. The in vitro treatment of MDA-MB-231 cells with ET1, resulted in switch from DLX2 to DLX5 expression. By data mining in microarray datasets we found that expression of DLX2 occurred in 21.6% of patients, and was significantly correlated with prolonged disease-free survival and reduced incidence of relapse. Instead, DLX5 was expressed in a small subset of cases, 2.2% of total, displaying reduced disease-free survival and high incidence of relapse which was, however, non-significantly different from the other groups due to the small size of the DLX+ cohort. In all cases, we found mutually exclusive expression of DLX2 and DLX5.ConclusionsOur studies indicate that DLX genes are involved in human breast cancer progression, and that DLX2 and DLX5 genes might serve as prognostic markers.


The FASEB Journal | 2015

Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans

Mirko Magnone; Pietro Ameri; Annalisa Salis; Gabriella Andraghetti; Laura Emionite; Giovanni Murialdo; Antonio De Flora; Elena Zocchi

2‐Cis,4‐trans‐abscisic acid (ABA) is a plant hormone that is present also in animals. Several lines of evidence suggest that ABA contributes to the regulation of glycemia in mammals: nanomolar ABA stimulates insulin release from β‐pancreatic cells and glucose transporter‐4‐mediated glucose uptake by myoblasts and adipocytes in vitro; plasma ABA increases in normal human subjects, but not in diabetic patients, after a glucose load for an oral glucose tolerance test (OGTT). The presence of ABA in fruits prompted an exploration of the bioavailability of dietary ABA and the effect of ABA‐rich fruit extracts on glucose tolerance. Rats underwent an OGTT, with or without 1 μg/kg ABA, either synthetic or present in a fruit extract. Human volunteers underwent an OGTT or a standard breakfast and lunch, with or without a fruit extract, yielding an ABA dose of 0.85 or 0.5 μg/kg, respectively. Plasma glucose, insulin, and ABA were measured at different time points. Oral ABA at 0.5–1 μg/kg significantly lowered glycemia and insulinemia in rats and in humans. Thus, the glycemia‐lowering effect of low‐dose ABA in vivo does not depend on an increased insulin release. Low‐dose ABA intake may be proposed as an aid to improving glucose tolerance in patients with diabetes who are deficient in or resistant to insulin.—Magnone, M., Ameri, P., Salis, A., Andraghetti, G., Emionite, L., Murialdo, G., De Flora, A., Zocchi, E. Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans. FASEB J. 29, 4783–4793 (2015). www.fasebj.org

Collaboration


Dive into the Laura Emionite's collaboration.

Top Co-Authors

Avatar

Michele Cilli

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Fabio Pastorino

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Mirco Ponzoni

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Brignole

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrizia Perri

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge