Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura F. Grogan is active.

Publication


Featured researches published by Laura F. Grogan.


Proceedings of the Royal Society of London B: Biological Sciences | 2015

Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

Arnaud Bataille; Scott D. Cashins; Laura F. Grogan; Lee F. Skerratt; David Scott Hunter; Michael McFadden; Benjamin C. Scheele; Laura A. Brannelly; Amy Macris; Peter S. Harlow; Sara C. Bell; Lee Berger; Bruce Waldman

The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.


Conservation Biology | 2013

Chytridiomycosis and Seasonal Mortality of Tropical Stream‐Associated Frogs 15 Years after Introduction of Batrachochytrium dendrobatidis

Andrea D. Phillott; Laura F. Grogan; Scott D. Cashins; Keith R. McDonald; Lee Berger; Lee F. Skerratt

Assessing the effects of diseases on wildlife populations can be difficult in the absence of observed mortalities, but it is crucial for threat assessment and conservation. We performed an intensive capture-mark-recapture study across seasons and years to investigate the effect of chytridiomycosis on demographics in 2 populations of the threatened common mist frog (Litoria rheocola) in the lowland wet tropics of Queensland, Australia. Infection prevalence was the best predictor for apparent survival probability in adult males and varied widely with season (0-65%). Infection prevalence was highest in winter months when monthly survival probabilities were low (approximately 70%). Populations at both sites exhibited very low annual survival probabilities (12-15%) but high recruitment (71-91%), which resulted in population growth rates that fluctuated seasonally. Our results suggest that even in the absence of observed mortalities and continued declines, and despite host-pathogen co-existence for multiple host generations over almost 2 decades, chytridiomycosis continues to have substantial seasonally fluctuating population-level effects on amphibian survival, which necessitates increased recruitment for population persistence. Similarly infected populations may thus be under continued threat from chytridiomycosis which may render them vulnerable to other threatening processes, particularly those affecting recruitment success.


PLOS ONE | 2013

Prior infection does not improve survival against the amphibian disease chytridiomycosis

Scott D. Cashins; Laura F. Grogan; Michael McFadden; David Hunter; Peter S. Harlow; Lee Berger; Lee F. Skerratt

Many amphibians have declined globally due to introduction of the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Hundreds of species, many in well-protected habitats, remain as small populations at risk of extinction. Currently the only proven conservation strategy is to maintain species in captivity to be reintroduced at a later date. However, methods to abate the disease in the wild are urgently needed so that reintroduced and wild animals can survive in the presence of Bd. Vaccination has been widely suggested as a potential strategy to improve survival. We used captive-bred offspring of critically endangered booroolong frogs (Litoria booroolongensis) to test if vaccination in the form of prior infection improves survival following re exposure. We infected frogs with a local Bd isolate, cleared infection after 30 days (d) using itraconazole just prior to the onset of clinical signs, and then re-exposed animals to Bd at 110 d. We found prior exposure had no effect on survival or infection intensities, clearly showing that real infections do not stimulate a protective adaptive immune response in this species. This result supports recent studies suggesting Bd may evade or suppress host immune functions. Our results suggest vaccination is unlikely to be useful in mitigating chytridiomycosis. However, survival of some individuals from all experimental groups indicates existence of protective innate immunity. Understanding and promoting this innate resistance holds potential for enabling species recovery.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion

Peter M. Piermarini; Laura F. Grogan; Kenneth Lau; Li Wang; Klaus W. Beyenbach

Transepithelial fluid secretion across the renal (Malpighian) tubule epithelium of the mosquito (Aedes aegypti) is energized by the vacuolar-type (V-type) H(+)-ATPase and not the Na(+)-K(+)-ATPase. Located at the apical membrane of principal cells, the V-type H(+)-ATPase translocates protons from the cytoplasm to the tubule lumen. Secreted protons are likely to derive from metabolic H(2)CO(3), which raises questions about the handling of HCO(3)(-) by principal cells. Accordingly, we tested the hypothesis that a Cl/HCO(3) anion exchanger (AE) related to the solute-linked carrier 4 (SLC4) superfamily mediates the extrusion of HCO(3)(-) across the basal membrane of principal cells. We began by cloning from Aedes Malpighian tubules a full-length cDNA encoding an SLC4-like AE, termed AeAE. When expressed heterologously in Xenopus oocytes, AeAE is both N- and O-glycosylated and mediates Na(+)-independent intracellular pH changes that are sensitive to extracellular Cl(-) concentration and to DIDS. In Aedes Malpighian tubules, AeAE is expressed as two distinct forms: one is O-glycosylated, and the other is N-glycosylated. Significantly, AeAE immunoreactivity localizes to the basal regions of stellate cells but not principal cells. Concentrations of DIDS that inhibit AeAE activity in Xenopus oocytes have no effects on the unstimulated rates of fluid secretion mediated by Malpighian tubules as measured by the Ramsay assay. However, in Malpighian tubules stimulated with kinin or calcitonin-like diuretic peptides, DIDS reduces the diuretic rates of fluid secretion to basal levels. In conclusion, Aedes Malpighian tubules express AeAE in the basal region of stellate cells, where this transporter may participate in producing diuretic rates of transepithelial fluid secretion.


Journal of Animal Ecology | 2016

Endemicity of chytridiomycosis features pathogen overdispersion

Laura F. Grogan; Andrea D. Phillott; Benjamin C. Scheele; Lee Berger; Scott D. Cashins; Sara C. Bell; Robert Puschendorf; Lee F. Skerratt

Pathogens can be critical drivers of the abundance and distribution of wild animal populations. The presence of an overdispersed pathogen load distribution between hosts (where few hosts harbour heavy parasite burdens and light infections are common) can have an important stabilizing effect on host-pathogen dynamics where infection intensity determines pathogenicity. This may potentially lead to endemicity of an introduced pathogen rather than extirpation of the host and/or pathogen. Overdispersed pathogen load distributions have rarely been considered in wild animal populations as an important component of the infection dynamics of microparasites such as bacteria, viruses, protozoa and fungi. Here we examined the abundance, distribution and transmission of the model fungal pathogen Batrachochytrium dendrobatidis (Bd, cause of amphibian chytridiomycosis) between wild-caught Litoria rheocola (common mist frogs) to investigate the effects of an overdispersed pathogen load distribution on the host population in the wild. We quantified host survival, infection incidence and recovery probabilities relative to infectious burden, and compared the results of models where pathogen overdispersion either was or was not considered an important feature of host-pathogen dynamics. We found the distribution of Bd load between hosts to be highly overdispersed. We found that host survival was related to infection burden and that accounting for pathogen overdispersion allowed us to better understand infection dynamics and their implications for disease control. In addition, we found that the pattern of host infections and recoveries varied markedly with season whereby (i) infections established more in winter, consistent with temperature-dependent effects on fungal growth, and (ii) recoveries (loss of infection) occurred frequently in the field throughout the year but were less likely in winter. Our results suggest that pathogen overdispersion is an important feature of endemic chytridiomycosis and that intensity of infection determines disease impact. These findings have important implications for our understanding of chytridiomycosis dynamics and the application of management strategies for disease mitigation. We recommend quantifying individual infectious burdens rather than infection state where possible in microparasitic diseases.


Scientific Data | 2018

Survival, gene and metabolite responses of Litoria verreauxii alpina frogs to fungal disease chytridiomycosis

Laura F. Grogan; Jason Mulvenna; Joel Gummer; Ben C. Scheele; Lee Berger; Scott D. Cashins; Michael McFadden; Peter S. Harlow; David Hunter; Robert D. Trengove; Lee F. Skerratt

The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) from multiple populations (one evolutionarily naïve to chytridiomycosis) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.


Molecular Ecology | 2018

Evolution of resistance to chytridiomycosis is associated with a robust early immune response

Laura F. Grogan; Scott D. Cashins; Lee F. Skerratt; Lee Berger; Michael McFadden; Peter S. Harlow; David Hunter; Ben C. Scheele; Jason Mulvenna

Potentiating the evolution of immunity is a promising strategy for addressing biodiversity diseases. Assisted selection for infection resistance may enable the recovery and persistence of amphibians threatened by chytridiomycosis, a devastating fungal skin disease threatening hundreds of species globally. However, knowledge of the mechanisms involved in the natural evolution of immunity to chytridiomycosis is limited. Understanding the mechanisms of such resistance may help speed‐assisted selection. Using a transcriptomics approach, we examined gene expression responses of endangered alpine tree frogs (Litoria verreauxii alpina) to subclinical infection, comparing two long‐exposed populations with a naïve population. We performed a blinded, randomized and controlled exposure experiment, collecting skin, liver and spleen tissues at 4, 8 and 14 days postexposure from 51 wild‐caught captively reared infection‐naïve adult frogs for transcriptome assembly and differential gene expression analyses. We analysed our results in conjunction with infection intensity data, and the results of a large clinical survival experiment run concurrently with individuals from the same clutches. Here, we show that frogs from an evolutionarily long‐exposed and phenotypically more resistant population of the highly susceptible alpine tree frog demonstrate a more robust innate and adaptive immune response at the critical early subclinical stage of infection when compared with two more susceptible populations. These results are consistent with the occurrence of evolution of resistance against chytridiomycosis, help to explain underlying resistance mechanisms, and provide genes of potential interest and sequence data for future research. We recommend further investigation of cell‐mediated immunity pathways, the role of interferons and mechanisms of lymphocyte suppression.


Scientific Reports | 2018

Chytridiomycosis causes catastrophic organism-wide metabolic dysregulation including profound failure of cellular energy pathways

Laura F. Grogan; Lee F. Skerratt; Lee Berger; Scott D. Cashins; Robert D. Trengove; Joel Gummer

Chytridiomycosis is among several recently emerged fungal diseases of wildlife that have caused decline or extinction of naïve populations. Despite recent advances in understanding pathogenesis, host response to infection remains poorly understood. Here we modelled a total of 162 metabolites across skin and liver tissues of 61 frogs from four populations (three long-exposed and one naïve to the fungus) of the Australian alpine tree frog (Litoria verreauxii alpina) throughout a longitudinal exposure experiment involving both infected and negative control individuals. We found that chytridiomycosis dramatically altered the organism-wide metabolism of clinically diseased frogs. Chytridiomycosis caused catastrophic failure of normal homeostatic mechanisms (interruption of biosynthetic and degradation metabolic pathways), and pronounced dysregulation of cellular energy metabolism. Key intermediates of the tricarboxylic acid cycle were markedly depleted, including in particular α-ketoglutarate and glutamate that together constitute a key nutrient pathway for immune processes. This study was the first to apply a non-targeted metabolomics approach to a fungal wildlife disease and specifically to dissect the host-pathogen interface of Bd-infected frogs. The patterns of metabolite accumulation we have identified reveal whole-body metabolic dysfunction induced by a fungal skin infection, and these findings have broad relevance for other fungal diseases.


PLOS Pathogens | 2014

Surveillance for Emerging Biodiversity Diseases of Wildlife

Laura F. Grogan; Lee Berger; Karrie Rose; Victoria Grillo; Scott D. Cashins; Lee F. Skerratt


Biological Conservation | 2017

After the epidemic: Ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis

Ben C. Scheele; Lee F. Skerratt; Laura F. Grogan; David Hunter; Nick Clemann; Michael McFadden; David A. Newell; Graeme Gillespie; Geoffrey W. Heard; Laura A. Brannelly; Alexandra A. Roberts; Lee Berger

Collaboration


Dive into the Laura F. Grogan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael McFadden

Taronga Conservation Society Australia

View shared research outputs
Top Co-Authors

Avatar

David Hunter

Office of Environment and Heritage

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben C. Scheele

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin C. Scheele

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge