Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Faas is active.

Publication


Featured researches published by Laura Faas.


Developmental Dynamics | 2009

Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis

Laura Faas; Harry V. Isaacs

Using Xenopus tropicalis, we present the first analysis of the developmental effects that result from knocking down the function of the three Cdx genes present in the typical vertebrate genome. Knockdowns of individual Cdx genes lead to a similar range of posterior defects; compound Cdx knockdowns result in increasingly severe posterior truncations, accompanied by posterior shifts and reduction of 5′ Hox gene expression. We provide evidence that Cdx and Wnt3A genes are components of a positive feedback loop operating in the posterior axis. We show that Cdx function is required during later, but not early stages of development, for correct regional specification of the endoderm and morphogenesis of the gut. Our results support the hypothesis that during amphibian development the overall landscape of Cdx activity in the embryo is more important than the specific function of individual Cdx proteins. Developmental Dynamics 238:835–852, 2009.


PLOS ONE | 2009

Characterisation of the fibroblast growth factor dependent transcriptome in early development.

Peter Branney; Laura Faas; Sarah E. Steane; Mary Elizabeth Pownall; Harry V. Isaacs

Background FGF signaling has multiple roles in regulating processes in animal development, including the specification and patterning of the mesoderm. In addition, FGF signaling supports self renewal of human embryonic stem cells and is required for differentiation of murine embryonic stem cells into a number of lineages. Methodology/Principal Findings Given the importance of FGF signaling in regulating development and stem cell behaviour, we aimed to identify the transcriptional targets of FGF signalling during early development in the vertebrate model Xenopus laevis. We analysed the effects on gene expression in embryos in which FGF signaling was inhibited by dominant negative FGF receptors. 67 genes positively regulated by FGF signaling and 16 genes negatively regulated by FGF signaling were identified. FGF target genes are expressed in distinct waves during the late blastula to early gastrula phase. Many of these genes are expressed in the early mesoderm and dorsal ectoderm. A widespread requirement for FGF in regulating genes expressed in the Spemann organizer is revealed. The FGF targets MKP1 and DUSP5 are shown to be negative regulators of FGF signaling in early Xenopus tissues. FoxD3 and Lin28, which are involved in regulating pluripotency in ES cells are shown to be down regulated when FGF signaling is blocked. Conclusions We have undertaken a detailed analysis of FGF target genes which has generated a robust, well validated data set. We have found a widespread role for FGF signaling in regulating the expression of genes mediating the function of the Spemann organizer. In addition, we have found that the FGF targets MKP1 and DUSP5 are likely to contribute to the complex feedback loops involved in modulating responses to FGF signaling. We also find a link between FGF signaling and the expression of known regulators of pluripotency.


Development | 2013

Lin28 proteins are required for germ layer specification in Xenopus.

Laura Faas; Fiona Warrander; Richard J. Maguire; Simon A. Ramsbottom; Diana Quinn; Paul G. Genever; Harry V. Isaacs

Lin28 family proteins share a unique structure, with both zinc knuckle and cold shock RNA-binding domains, and were originally identified as regulators of developmental timing in Caenorhabditis elegans. They have since been implicated as regulators of pluripotency in mammalian stem cells in culture. Using Xenopus tropicalis, we have undertaken the first analysis of the effects on the early development of a vertebrate embryo resulting from global inhibition of the Lin28 family. The Xenopus genome contains two Lin28-related genes, lin28a and lin28b. lin28a is expressed zygotically, whereas lin28b is expressed both zygotically and maternally. Both lin28a and lin28b are expressed in pluripotent cells of the Xenopus embryo and are enriched in cells that respond to mesoderm-inducing signals. The development of axial and paraxial mesoderm is severely abnormal in lin28 knockdown (morphant) embryos. In culture, the ability of pluripotent cells from the embryo to respond to the FGF and activin/nodal-like mesoderm-inducing pathways is compromised following inhibition of lin28 function. Furthermore, there are complex effects on the temporal regulation of, and the responses to, mesoderm-inducing signals in lin28 morphant embryos. We provide evidence that Xenopus lin28 proteins play a key role in choreographing the responses of pluripotent cells in the early embryo to the signals that regulate germ layer specification, and that this early function is probably independent of the recognised role of Lin28 proteins in negatively regulating let-7 miRNA biogenesis.


Development | 2014

An essential role for LPA signalling in telencephalon development

Timothy J. Geach; Laura Faas; Christelle Devader; Anai Gonzalez-Cordero; Jacqueline M. Tabler; Hannah Brunsdon; Harry V. Isaacs; Leslie Dale

Lysophosphatidic acid (LPA) has wide-ranging effects on many different cell types, acting through G-protein-coupled receptors such as LPAR6. We show that Xenopus lpar6 is expressed from late blastulae and is enriched in the mesoderm and dorsal ectoderm of early gastrulae. Expression in gastrulae is an early response to FGF signalling. Transcripts for lpar6 are enriched in the neural plate of Xenopus neurulae and loss of function caused forebrain defects, with reduced expression of telencephalic markers (foxg1, emx1 and nkx2-1). Midbrain (en2) and hindbrain (egr2) markers were unaffected. Foxg1 expression requires LPAR6 within ectoderm and not mesoderm. Head defects caused by LPAR6 loss of function were enhanced by co-inhibiting FGF signalling, with defects extending into the hindbrain (en2 and egr2 expression reduced). This is more severe than expected from simple summation of individual defects, suggesting that LPAR6 and FGF have overlapping or partially redundant functions in the anterior neural plate. We observed similar defects in forebrain development in loss-of-function experiments for ENPP2, an enzyme involved in the synthesis of extracellular LPA. Our study demonstrates a role for LPA in early forebrain development.


Development | 2010

Conserved and novel roles for the Gsh2 transcription factor in primary neurogenesis

Emily F. Winterbottom; Jean C. Illes; Laura Faas; Harry V. Isaacs

The Gsx genes encode members of the ParaHox family of homeodomain transcription factors, which are expressed in the developing central nervous system in members of all major groups of bilaterians. The Gsx genes in Xenopus show similar patterns of expression to their mammalian homologues during late development. However, they are also expressed from early neurula stages in an intermediate region of the open neural plate where primary interneurons form. The Gsx homologue in the protostome Drosophila is expressed in a corresponding intermediate region of the embryonic neuroectoderm, and is essential for the correct specification of the neuroblasts that arise from it, suggesting that Gsx genes may have played a role in intermediate neural specification in the last common bilaterian ancestor. Here, we show that manipulation of Gsx function disrupts the differentiation of primary interneurons. We demonstrate that, despite their similar expression patterns, the uni-directional system of interactions between homeodomain transcription factors from the Msx, Nkx and Gsx families in the Drosophila neuroectoderm is not conserved between their homologues in the Xenopus open neural plate. Finally, we report the identification of Dbx1 as a direct target of Gsh2-mediated transcriptional repression, and show that a series of cross-repressive interactions, reminiscent of those that exist in the amniote neural tube, act between Gsx, Dbx and Nkx transcription factors to pattern the medial aspect of the central nervous system at open neural plate stages in Xenopus.


Developmental Biology | 2010

Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2

Emily C. Guiral; Laura Faas; Mary Elizabeth Pownall

In vertebrates, there are two related genes, Sulf1 and Sulf2 that code for extracellular heparan sulphate 6-0-endosulphatases. These enzymes act to post-synthetically remodel heparan sulphate chains, generating structural diversity of cell surface HSPGs; this activity provides an important mechanism to modulate developmental cell signalling. Here we describe the expression and activity of Xenopus tropicalis Sulf2 (XtSulf2), which like XtSulf1, can act extracellularly to inhibit BMP4 and FGF4 signalling. Consistent with its discrete expression in regions of the anterior developing nervous system, we found that overexpression of XtSulf2 disrupts the expression of a set of neural markers and inhibits the migration of the neural crest. Using a combination of grafting experiments and antisense morpholino based knockdown studies in Xenopus embryos, we demonstrate that endogenous XtSulf1 and XtSulf2 play an important role during cranial neural crest cell migration in vivo.


Pigment Cell & Melanoma Research | 2012

Adam10 haploinsufficiency causes freckle-like macules in Hairless mice

Grace Tharmarajah; Laura Faas; Karina Reiss; Paul Saftig; Antony R. Young; Catherine D. Van Raamsdonk

The Hairless nuclear receptor co‐repressor is required for hair follicle regeneration during the hair cycle. The classical HairlessHr/HairlessHr mouse mutant loses all hair between 2 and 3 weeks of age. As the mice age, their trunk skin develops epidermal pigmentation, a feature of human skin which is not found in normal haired mice. In this report, we present a new, dominant mouse mutation, Pied, which arose within a colony of HairlessHr/HairlessHr mice and causes freckle‐like macules on the skin. The Pied macules require HairlessHr homozygosity to form and are composed of localized clusters of epidermal melanocytes. Through linkage analysis, we find that the Pied mutation is a 1914 base pair loss‐of‐function deletion in the Adam10 zinc metalloprotease gene. The pathways that specifically maintain long‐term pigmentation patterns in adults are not well understood. We have identified Adam10 as an inhibitor of melanocyte expansion in adult skin.


Developmental Dynamics | 2016

Lin28 proteins promote expression of 17∼92 family miRNAs during amphibian development

Fiona Warrander; Laura Faas; Oleg V. Kovalevskiy; Daniel T. Peters; Mark Coles; Alfred A. Antson; Paul G. Genever; Harry V. Isaacs

Background: Lin28 proteins are post‐transcriptional regulators of gene expression with multiple roles in development and the regulation of pluripotency in stem cells. Much attention has focussed on Lin28 proteins as negative regulators of let‐7 miRNA biogenesis; a function that is conserved in several animal groups and in multiple processes. However, there is increasing evidence that Lin28 proteins have additional roles, distinct from regulation of let‐7 abundance. We have previously demonstrated that lin28 proteins have functions associated with the regulation of early cell lineage specification in Xenopus embryos, independent of a lin28/let‐7 regulatory axis. However, the nature of lin28 targets in Xenopus development remains obscure. Results: Here, we show that mir‐17∼92 and mir‐106∼363 cluster miRNAs are down‐regulated in response to lin28 knockdown, and RNAs from these clusters are co‐expressed with lin28 genes during germ layer specification. Mature miRNAs derived from pre‐mir‐363 are most sensitive to lin28 inhibition. We demonstrate that lin28a binds to the terminal loop of pre‐mir‐363 with an affinity similar to that of let‐7, and that this high affinity interaction requires to conserved a GGAG motif. Conclusions: Our data suggest a novel function for amphibian lin28 proteins as positive regulators of mir‐17∼92 family miRNAs. Developmental Dynamics 245:34–46, 2016.


BMC Biology | 2015

Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution

Ferdinand Marlétaz; Ignacio Maeso; Laura Faas; Harry V. Isaacs; Peter W. H. Holland

BackgroundThe functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate.ResultsWe examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication.ConclusionsDespite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates.


Proteome Science | 2014

Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections

Tugba Can; Laura Faas; David A. Ashford; Adam A. Dowle; Jerry Thomas; Peter O’Toole; Gonzalo Blanco

The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways.

Collaboration


Dive into the Laura Faas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anai Gonzalez-Cordero

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge