Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Fontana is active.

Publication


Featured researches published by Laura Fontana.


Colloids and Surfaces B: Biointerfaces | 2016

Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis.

Hagar Bessar; Iole Venditti; Luisa Benassi; Cristina Vaschieri; Paola Azzoni; Giovanni Pellacani; Cristina Magnoni; Elisabetta Botti; Viviana Casagrande; Massimo Federici; Antonio Costanzo; Laura Fontana; Giovanna Testa; Fawzia Farag Mostafa; Samia Ibrahim; Maria Vittoria Russo; Ilaria Fratoddi

Gold nanoparticles (AuNPs) represent an effective choice for topical drug delivery systems thanks to their small size, general non-toxicity, ease of functionalization and high surface to volume ratio. Even if systemic, methotrexate still plays an important role in psoriasis treatment: its topical use shows insufficient percutaneus penetration owing to limited passive diffusion, high molecular weight and dissociation at physiological pH. The aim of our study was to design a new drug delivery nanocarrier for Methotrexate and to improve its solubility, stability and biodistribution. AuNPs were on purpose prepared with a hydrophilic stabilizing layer, in order to improve the colloidal stability in water. Water-soluble gold nanoparticles functionalized by sodium 3-mercapto-1-propansulfonate (Au-3MPS) were prepared and loaded with methotrexate (MTX). The loading efficiency of MTX on Au-3MPS was assessed in the range 70-80%, with a fast release (80% in one hour). The release was studied up to 24h reaching the value of 95%. The Au-3MPS@MTX conjugate was fully characterized by spectroscopic techniques (UV-vis, FTIR) and DLS. Preliminary toxicity tests in the presence of keratinocytes monolayers allowed to assess that the used Au-3MPS are not toxic. The conjugate was then topically used on C57BL/6 mouse normal skin in order to trace the absorption behavior. STEM images clearly revealed the distribution of gold nanoparticles inside the cells. In vitro studies showed that Methotrexate conjugated with Au-3MPS is much more efficient than Methotrexate alone. Moreover, DL50, based on MTT analysis, is 20 folds reduced at 48 h, by the presence of nanoparticles conjugation. UV-vis spectra for in vivo tracing of the conjugate on bare mouse skin after 24h of application, show increased delivery of Methotrexate in the epidermis and dermis using Au-3MPS@MTX conjugate, compared to MTX alone. Moreover we observed absence of the Au-3MPS in the dermis and in the epidermis, suggesting that these layers of the skin do not retain the nanoparticles. Based on our data, we found that the novel Au-3MPS@MTX conjugate is an effective non-toxic carrier for the satisfactory percutaneous absorption of Methotrexate and could help in possible topical treatment of psoriasis.


Journal of Colloid and Interface Science | 2014

Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: Loading and release study

Iole Venditti; Laura Fontana; Ilaria Fratoddi; Chiara Battocchio; C. Cametti; Simona Sennato; Francesco Mura; Fabio Sciubba; Maurizio Delfini; Maria Vittoria Russo

Water-soluble gold nanoparticles functionalized by sodium 3-mercapto-1-propansulfonate (Au-3MPS) were synthesized with different Au/thiol molar ratios for their ability to interact with biomolecules. In particular, a synthetic glucocorticoid steroid, i.e. dexamethasone (DXM) was selected. Herein, the formation of the Au-3MPS/DXM bioconjugate is reported. Au-3MPS nanoparticles show a plasmon resonance at 520 nm, have a spherical morphology and average size of 7-10 nm. The total number of gold atoms was estimated to be about 10600, with a surface component of 8800 atoms and a number of thiol ligands of about 720, roughly one anchored thiol every 10 surface gold atoms. The drug-nanoparticle interaction occurs through the fluorine atom of DXM and Au(I) atoms on the gold nanoparticle surface. The 3MPS ligands closely pack apart each other to leave room for the DXM, that lies at the gold surface in an unusual, almost parallel feature. The loading efficiency of DXM on Au-3MPS was assessed in the range 70-80%, depending on the thiol content. Moreover, our studies confirmed the drug release of about 70% in 5 days. Thanks to their unique properties, i.e. high water solubility, small size and almost monodispersity, Au-3MPS display high potential in biotechnological and biomedical applications, mainly for the loading and release of water insoluble drugs.


Colloids and Surfaces B: Biointerfaces | 2015

Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.

Iole Venditti; Cleofe Palocci; Laura Chronopoulou; Ilaria Fratoddi; Laura Fontana; Marco Diociaiuti; Maria Vittoria Russo

In this work, a simple and versatile methodology to obtain two different bioconjugated systems has been developed by the immobilization of Candida rugosa lipase (CRL) on hydrophilic gold nanoparticles functionalized with 2-diethylaminoethanethiol hydrochloride (DEA) or with sodium 3-mercapto-1-propanesulfonate (3MPS), namely Au-DEA@CRL and Au-3MPS@CRL. Both spectroscopic and morphological properties of metal nanoparticles have been deeply investigated. The enzyme loading and lipolytic activity of AuNPs@CRL bioconjugates have been studied with respect to different surface functionalization and compared with the free enzyme. Some physical and chemical parameters had a strong effect on enzyme activity and stability, that were improved in the case of the Au-DEA@CRL bioconjugate, which showed a remarkable biocatalytic performance (95% of residual lipolytic activity compared with free CRL) and stability in experimental conditions concerning pH (range 5-8) and temperature (range 20-60°C), as often required for the industrial scale up of catalytic systems.


Journal of Materials Chemistry C | 2014

Network assembly of gold nanoparticles linked through fluorenyl dithiol bridges

Maurizio Quintiliani; Mauro Bassetti; Chiara Pasquini; Chiara Battocchio; Marco Rossi; Francesco Mura; Roberto Matassa; Laura Fontana; Maria Vittoria Russo; Ilaria Fratoddi

Gold nanoparticles stabilized by two novel bifunctional fluorenyl thiols, generated in situ from 9,9-didodecyl-2,7-bis(acetylthio)fluorene (1) and 9,9-didodecyl-2,7-bis(acetylthiophenylethynyl)fluorene (2), exhibit bridged structures which self-assemble in parallel lines. The size, shape and structure of the AuNPs have been determined by means of dynamic light scattering (DLS), scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). AuNPs modified with fluorenyl thiol derivatives show diameters in the range of 3–7 nm. The linkage between the nanoparticles can be envisaged with the formation of dyads supported by TEM analysis and XPS measurements. Remarkably, investigation by scanning electron microscopy of the AuNP films revealed an ordered distribution of well-separated individual nanoparticles to form a 2D network. The formation of interconnected networks between AuNPs with different distances, depending on the nature of the thiol linkers (1) or (2), and the photoluminescence properties open perspectives for applications in optical devices and electronics.


Materials | 2017

Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone) Membranes: Synthesis and Characterization

Iole Venditti; Laura Fontana; Francesca A. Scaramuzzo; Maria Vittoria Russo; Chiara Battocchio; Laura Carlini; Laurent Gonon; Vincent Mareau; Ilaria Fratoddi

Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS), were synthesized inside a swollen sulfonated poly(ether ether ketone) membrane (sPEEK). The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a testing period of three months. The size distribution of the nanoparticles was assessed, and the sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite in water at different pH levels, achieving a better understanding of the membrane behavior in a water environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated. These preliminary results suggest that the newly developed nanocomposite membranes could be promising materials for fuel cell applications.


Beilstein Journal of Nanotechnology | 2016

Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water

P. Prosposito; Federico Mochi; Erica Ciotta; Mauro Casalboni; Fabio De Matteis; Iole Venditti; Laura Fontana; Giovanna Testa; Ilaria Fratoddi

Due their excellent chemo-physical properties and ability to exhibit surface plasmon resonance, silver nanoparticles (AgNPs) have become a material of choice in various applications, such as nanosensors, electronic devices, nanobiotechnology and nanomedicine. In particular, from the environmental monitoring perspective, sensors based on silver nanoparticles are in great demand because of their antibacterial and inexpensive synthetic method. In the present study, we synthesized AgNPs in water phase using silver nitrate as precursor molecules, hydrophilic thiol (3-mercapto-1-propanesulfonic acid sodium salt, 3MPS) and sodium borohydride as capping and reducing agents, respectively. The AgNPs were characterized using techniques such as surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS), zeta potential (ζ-potential) measurements and scanning tunneling microscopy (STM). Further, to demonstrate the environmental application of our AgNPs, we also applied them for heavy metal sensing by detecting visible color modification due to SPR spectral changes. We found that these negatively charged AgNPs show good response to nickel (II) and presented good sensibility properties for the detection of low amount of ions in water in the working range of 1.0–0.1 ppm.


RSC Advances | 2016

Negatively charged gold nanoparticles as a dexamethasone carrier: stability in biological media and bioactivity assessment in vitro

A. R. Rossi; Simona Donati; Laura Fontana; Francesco Porcaro; Chiara Battocchio; Enrico Proietti; Iole Venditti; Laura Bracci; Ilaria Fratoddi

Gold nanoparticles (AuNPs) have been extensively used in biological applications because of their high biocompatibility, ease of characterization and the extensive knowledge of their surface chemistry. These features make AuNPs readily exploitable for drug delivery and novel diagnostic and therapeutic approaches. In a previous work, we showed that small size (5–10 nm) AuNPs functionalized by sodium 3-mercapto-1-propanesulfonate (3MPS) can be efficiently loaded with the glucocorticoid drug dexamethasone (DXM) and are stable in water and PBS. In the present study, we further analysed the stability and the drug release kinetics of DXM-loaded AuNPs functionalized by sodium 3-mercaptopropane sulfonate (AuNP-3MPS/DXM) and their unconjugated counterparts (AuNP-3MPS) in different biological media. Moreover, we evaluated AuNP-3MPS cyto-compatibility on two mammalian cell lines and tested their specific activity as drug carriers on DXM-sensitive murine and human tumor cells. The colloidal stability of AuNP-3MPS/DXM was significantly increased in all tested culture media, compared with the unconjugated AuNP-3MPS and both AuNP-3MPS formulations which proved non-toxic to biological systems in vitro. Most importantly, we showed that AuNP-3MPS/DXM continuously release bioactive DXM molecules that efficiently induce cell proliferation arrest and apoptotic cell death on a human lymphoma cell line and upregulation of the DXM-inducible programmed cell death-1 (PD-1) molecule on activated mouse T lymphocytes. These data confirm that the AuNP-3MPS/DXM conjugate is a promising system for drug delivery and open interesting perspectives for future in vivo applications.


Beilstein Journal of Nanotechnology | 2016

Functionalized platinum nanoparticles with surface charge trigged by pH: synthesis, characterization and stability studies

Giovanna Testa; Laura Fontana; Iole Venditti; Ilaria Fratoddi

In this work, the synthesis and characterization of functionalized platinum nanoparticles (PtNPs) have been investigated. PtNPs were obtained by a wet redox procedure using 2-diethylaminoethanethiol hydrochloride (DEA) as capping agent. By varying the Pt/thiol molar ratio, monodispersed and stable particles with diameters in the range of 3–40 nm were isolated. The amino functionality allows neutral particles to be obtained in basic water solution and positive charged nanoparticles in neutral or acidic water solution (pH 7–2), as confirmed by DLS and ζ-potential measurements. FTIR spectroscopy, FE-SEM, DLS and ζ-potential measurements confirmed the size and showed long term water stability (up to three months) of the colloidal system.


Proceedings of SPIE | 2017

Hybrid metal-organic conductive network with plasmonic nanoparticles and fluorene (Conference Presentation)

Laura Fontana; Ilaria Fratoddi; Roberto Matassa; Giuseppe Familiari; Iole Venditti; Chiara Batocchio; Elena Magnano; Silvia Nappini; G. Leahu; A. Belardini; Roberto Li Voti; Concita Sibilia

For the development of new generation portable electronic devices, the realization of thin and flexible electrodes have a crucial role. Conductive organic systems can address this issue in different ways. Indeed, conductance in organic molecules were studied in different papers starting from seminal papers in last 70’s [1] up to recent ones [2]. Among organic species, conduction and electronic characteristics of Fluorene derivatives were studied in different configurations [3,4]. Unfortunately, the conductance of organic materials is limited by charge transport mechanism [5]. Hybrid system with organic conductive compounds covalently linked with metal centres can lead to enhanced conductivity [6]. Here we synthesized gold and silver nanoparticles (AuNPs and AgNPs) stabilized with a fluorene thiolate derivative, namely 9,9-Didodecyl-2,7-bis(acetylthio)fluorene (FL). In the synthesis process the metal nanoparticles (MNPs) size results to be around 5 nm in diameter [7]. When deposited on a planar substrate, the hybrid compound form a regular network of MNPs separated each other by fluorene spacers covalently linked by thiol groups [8]. We deposited the network on substrate with two interdigitated electrodes in order to measure conductive properties (I-V characteristics). In I-V measurements it results to be that AgNPs based network is 200 times more conductive than AuNPs one. Selective oxidation of AgNPs network close to positive electrodes gives rise to a Schottky diode behavior in the I-V characteristic that could find potential applications in nano-electronics devices. The fluorescence and extinction spectra of FL-AgNPs and FL-AuNPs where characterised. References [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977). [2] Hylke B. Akkerman, Paul W. M. Blom, Dago M. de Leeuw and Bert de Boer, Nature 441, 69 (2006). [3] Rajendra Prasad Kalakodimi, Aletha M. Nowak, and Richard L. McCreery, Chem. Mater. 17, 4939 (2005). [4] J. Wu, K. Mobley, and R. L. Mc Creery, J. Chem. Phys. 126, 024704 (2007). [5] Cristina Hermosa, Jose Vicente Álvarez, Mohammad-Reza Azani, Carlos J. Gómez-García, Michelle Fritz, Jose M. Soler, Julio Gómez-Herrero, Cristina Gómez-Navarro and Félix Zamora, Nature Commun. 4, 1709 (2013). DOI: 10.1038/ncomms2696. [6] Nunzio Tuccitto, Violetta Ferri, Marco Cavazzini, Silvio Quici, Genady Zhavnerko, Antonino Licciardello and Maria Anita Rampi, Nature Mater. 8, 41 (2009). [7] Quintiliani, M., Bassetti, M., Pasquini, C., et al. J. Mater. Chem. C, 2014, (2), pp. 2517-2527. [8] R. Matassa, G. Familiari, E. Battaglione, Concita Sibilia et al., Nanoscale, 2016,8, 18161-18169.


Applied Surface Science | 2016

Structural studies on drop-cast film based on functionalized gold nanoparticles network: The effect of thermal treatment

Laura Fontana; Ilaria Fratoddi; Iole Venditti; Dmitriy Ksenzov; Maria Vittoria Russo; Souren Grigorian

Collaboration


Dive into the Laura Fontana's collaboration.

Top Co-Authors

Avatar

Ilaria Fratoddi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Iole Venditti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanna Testa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Roberto Matassa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Familiari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

A. Belardini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesco Mura

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

G. Leahu

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge