Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura G. Dubois is active.

Publication


Featured researches published by Laura G. Dubois.


Journal of Medicinal Chemistry | 2009

Discovery of Novel 2-Aminobenzamide Inhibitors of Heat Shock Protein 90 as Potent, Selective and Orally Active Antitumor Agents

Kenneth He Huang; James Marvin Veal; R. Patrick Fadden; John W. Rice; Jeron Eaves; Jon-Paul Strachan; Amy F. Barabasz; Briana Foley; Thomas E. Barta; Wei Ma; Melanie Silinski; Mei Hu; Jeffrey M. Partridge; Anisa Scott; Laura G. Dubois; Tiffany A. Freed; Paul M. Steed; Andy J. Ommen; Emilie D. Smith; Philip F. Hughes; Angela R. Woodward; Gunnar J. Hanson; W. Stephen Mccall; Christopher John Markworth; Lindsay Hinkley; Matthew Jenks; Lifeng Geng; Meredith Lewis; James Otto; Bert Pronk

A novel class of heat shock protein 90 (Hsp90) inhibitors was developed from an unbiased screen to identify protein targets for a diverse compound library. These indol-4-one and indazol-4-one derived 2-aminobenzamides showed strong binding affinity to Hsp90, and optimized analogues exhibited nanomolar antiproliferative activity across multiple cancer cell lines. Heat shock protein 70 (Hsp70) induction and specific client protein degradation in cells on treatment with the inhibitors supported Hsp90 inhibition as the mechanism of action. Computational chemistry and X-ray crystallographic analysis of selected member compounds clearly defined the protein-inhibitor interaction and assisted the design of analogues. 4-[6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-indazol-1-yl]-2-[(trans-4-hydroxycyclohexyl)amino]benzamide (SNX-2112, 9) was identified as highly selective and potent (IC(50) Her2 = 11 nM, HT-29 = 3 nM); its prodrug amino-acetic acid 4-[2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-trifluoromethyl-4,5,6,7-tetrahydro-indazol-1-yl)-phenylamino]-cyclohexyl ester methanesulfonate (SNX-5422, 10) was orally bioavailable and efficacious in a broad range of xenograft tumor models (e.g. 67% growth delay in a HT-29 model) and is now in multiple phase I clinical trials.


Molecular Microbiology | 2011

Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms

Hector A. Saka; J. Will Thompson; Yi-Shan Chen; Yadunanda Kumar; Laura G. Dubois; M. Arthur Moseley; Raphael H. Valdivia

Chlamydia trachomatis is an obligate intracellular pathogen responsible for ocular and genital infections of significant public health importance. C. trachomatis undergoes a biphasic developmental cycle alternating between two distinct forms: the infectious elementary body (EB), and the replicative but non‐infectious reticulate body (RB). The molecular basis for these developmental transitions and the metabolic properties of the EB and RB forms are poorly understood as these bacteria have traditionally been difficult to manipulate through classical genetic approaches. Using two‐dimensional liquid chromatography – tandem mass spectrometry (LC/LC‐MS/MS) we performed a large‐scale, label‐free quantitative proteomic analysis of C. trachomatis LGV‐L2 EB and RB forms. Additionally, we carried out LC‐MS/MS to analyse the membranes of the pathogen‐containing vacuole (‘inclusion’). We developed a label‐free quantification approaches to measure protein abundance in a mixed‐proteome background which we applied for EB and RB quantitative analysis. In this manner, we catalogued the relative distribution of > 54% of the predicted proteins in the C. trachomatis LGV‐L2 proteome. Proteins required for central metabolism and glucose catabolism were predominant in the EB, whereas proteins associated with protein synthesis, ATP generation and nutrient transport were more abundant in the RB. These findings suggest that the EB is primed for a burst in metabolic activity upon entry, whereas the RB form is geared towards nutrient utilization, a rapid increase in cellular mass, and securing the resources for an impending transition back to the EB form. The most revealing difference between the two forms was the relative deficiency of cytoplasmic factors required for efficient type III secretion (T3S) in the RB stage at 18 h post infection, suggesting a reduced T3S capacity or a low frequency of active T3S apparatus assembled on a ‘per organism’ basis. Our results show that EB and RB proteomes are streamlined to fulfil their predicted biological functions: maximum infectivity for EBs and replicative capacity for RBs.


Arthritis & Rheumatism | 2008

Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis

John W. Rice; James M. Veal; R. Patrick Fadden; Amy F. Barabasz; Jeffrey M. Partridge; Thomas E. Barta; Laura G. Dubois; Kenneth He Huang; Sarah R. Mabbett; Melanie Silinski; Paul M. Steed; Steven E. Hall

OBJECTIVE To evaluate the ability of SNX-7081, a novel small molecule inhibitor of Hsp90, to block components of inflammation, including cytokine production, protein kinase activity, and angiogenic signaling. A close analog was evaluated in preclinical in vivo models of rheumatoid arthritis (RA). METHODS SNX-7081 binding to Hsp90 was characterized in Jurkat cells and RA synovial fibroblasts (RASFs). Inhibition of NF-kappaB nuclear translocation was evaluated in cellular systems, using lipopolysaccharide (LPS), tumor necrosis factor alpha, or interleukin-1beta stimulation. Suppression of cytokine production in THP-1 cells, human umbilical vein endothelial cells, and RASFs was studied. Disruption of MAPK signaling cascades by SNX-7081 following growth factor stimulation was assessed. SNX-7081 was tested in 2 relevant angiogenesis assays: platelet-derived growth factor activation of fibroblasts and LPS-induced nitric oxide (NO) release in J774 macrophages. A close analog, SNX-4414, was evaluated in rat collagen-induced arthritis and adjuvant-induced arthritis, following oral treatment. RESULTS SNX-7081 showed strong binding affinity to Hsp90 and expected induction of Hsp70. NF-kappaB nuclear translocation was blocked by SNX-7081 at nanomolar concentrations, and cytokine production was potently inhibited. Growth factor activation of ERK and JNK signaling was significantly reduced by SNX-7081. NO production was also sharply inhibited. In animal models, SNX-4414 fully inhibited paw swelling and improved body weight. Scores for inflammation, pannus formation, cartilage damage, and bone resorption returned to normal. CONCLUSION The present results demonstrate that a small molecule Hsp90 inhibitor can impact inflammatory disease processes. The strong in vivo efficacy observed with SNX-4414 provides preclinical validation for consideration of Hsp90 inhibitors in the treatment of RA.


Chemistry & Biology | 2010

Application of Chemoproteomics to Drug Discovery: Identification of a Clinical Candidate Targeting Hsp90

Patrick Fadden; Kenneth He Huang; James M. Veal; Paul M. Steed; Amy F. Barabasz; Briana Foley; Mei Hu; Jeffrey M. Partridge; John R. Rice; Anisa Scott; Laura G. Dubois; Tiffany A. Freed; Melanie Silinski; Thomas E. Barta; Philip F. Hughes; Andy J. Ommen; Wei Ma; Emilie D. Smith; Angela Woodward Spangenberg; Jeron Eaves; Gunnar J. Hanson; Lindsay Hinkley; Matthew Jenks; Meredith Lewis; James Otto; Gijsbertus J. Pronk; Katleen Verleysen; Timothy A. J. Haystead; Steven E. Hall

A chemoproteomics-based drug discovery strategy is presented that utilizes a highly parallel screening platform, encompassing more than 1000 targets, with a focused chemical library prior to target selection. This chemoproteomics-based process enables a data-driven selection of both the biological target and chemical hit after the screen is complete. The methodology has been exemplified for the purine binding proteome (proteins utilizing ATP, NAD, FAD). Screening of an 8000 member library yielded over 1500 unique protein-ligand interactions, which included novel hits for the oncology target Hsp90. The approach, which also provides broad target selectivity information, was used to drive the identification of a potent and orally active Hsp90 inhibitor, SNX-5422, which is currently in phase 1 clinical studies.


Blood | 2012

Erythrocyte plasma membrane–bound ERK1/2 activation promotes ICAM-4–mediated sickle red cell adhesion to endothelium

Rahima Zennadi; Erin J. Whalen; Erik J. Soderblom; Susan C. Alexander; J. Will Thompson; Laura G. Dubois; M. Arthur Moseley; Marilyn J. Telen

The core pathology of sickle cell disease (SCD) starts with the erythrocyte (RBC). Aberration in MAPK/ERK1/2 signaling, which can regulate cell adhesion, occurs in diverse pathologies. Because RBCs contain abundant ERK1/2, we predicted that ERK1/2 is functional in sickle (SS) RBCs and promotes adherence, a hallmark of SCD. ERK1/2 remained active in SS but not normal RBCs. β(2)-adrenergic receptor stimulation by epinephrine can enhance ERK1/2 activity only in SS RBCs via PKA- and tyrosine kinase p72(syk)-dependent pathways. ERK signaling is implicated in RBC ICAM-4 phosphorylation, promoting SS RBC adhesion to the endothelium. SS RBC adhesion and phosphorylation of both ERK and ICAM-4 all decreased with continued cell exposure to epinephrine, implying that activation of ICAM-4-mediated SS RBC adhesion is temporally associated with ERK1/2 activation. Furthermore, recombinant ERK2 phosphorylated α- and β-adducins and dematin at the ERK consensus motif. Cytoskeletal protein 4.1 also showed dynamic phosphorylation but not at the ERK consensus motif. These results demonstrate that ERK activation induces phosphorylation of cytoskeletal proteins and the adhesion molecule ICAM-4, promoting SS RBC adhesion to the endothelium. Thus, blocking RBC ERK1/2 activation, such as that promoted by catecholamine stress hormones, could ameliorate SCD pathophysiology.


Hepatology | 2011

High predictive accuracy of an unbiased proteomic profile for sustained virologic response in chronic hepatitis C patients

Keyur Patel; Joseph E. Lucas; J. Will Thompson; Laura G. Dubois; Hans L. Tillmann; Alexander J. Thompson; Diane Uzarski; Robert M. Califf; M.A. Moseley; Geoffrey S. Ginsburg; John G. McHutchison; Jeanette J. McCarthy

Chronic hepatitis C (CHC) infection is a leading cause of endstage liver disease. Current standard‐of‐care (SOC) interferon‐based therapy results in sustained virological response (SVR) in only one‐half of patients, and is associated with significant side effects. Accurate host predictors of virologic response are needed to individualize treatment regimens. We applied a label‐free liquid chromatography mass spectrometry (LC‐MS)‐based proteomics discovery platform to pretreatment sera from a well‐characterized and matched training cohort of 55 CHC patients, and an independent validation set of 41 CHC genotype 1 patients with characterized IL28B genotype. Accurate mass and retention time methods aligned samples to generate quantitative peptide data, with predictive modeling using Bayesian sparse latent factor regression. We identified 105 proteins of interest with two or more peptides, and a total of 3,768 peptides. Regression modeling selected three identified metaproteins, vitamin D binding protein, alpha 2 HS glycoprotein, and Complement C5, with a high predictive area under the receiver operator characteristic curve (AUROC) of 0.90 for SVR in the training cohort. A model averaging approach for identified peptides resulted in an AUROC of 0.86 in the validation cohort, and correctly identified virologic response in 71% of patients without the favorable IL28B “responder” genotype. Conclusion: Our preliminary data indicate that a serum‐based protein signature can accurately predict treatment response to current SOC in most CHC patients. (HEPATOLOGY 2011)


PLOS ONE | 2014

Proteomic Differences between Male and Female Anterior Cruciate Ligament and Patellar Tendon

Dianne Little; J. Will Thompson; Laura G. Dubois; David S. Ruch; M. Arthur Moseley; Farshid Guilak

The risk of anterior cruciate ligament (ACL) injury and re-injury is greater for women than men. Among other factors, compositional differences may play a role in this differential risk. Patellar tendon (PT) autografts are commonly used during reconstruction. The aim of the study was to compare protein expression in male and female ACL and PT. We hypothesized that there would be differences in key structural components between PT and ACL, and that components of the proteome critical for response to mechanical loading and response to injury would demonstrate significant differences between male and female. Two-dimensional liquid chromatography-tandem mass spectrometry and a label-free quantitative approach was used to identify proteomic differences between male and female PT and ACL. ACL contained less type I and more type III collagen than PT. There were tissue-specific differences in expression of proteoglycans, and ACL was enriched in elastin, tenascin C and X, cartilage oligomeric matrix protein, thrombospondin 4 and periostin. Between male and female donors, alcohol dehydrogenase 1B and complement component 9 were enriched in female compared to male. Myocilin was the major protein enriched in males compared to females. Important compositional differences between PT and ACL were identified, and we identified differences in pathways related to extracellular matrix regulation, complement, apoptosis, metabolism of advanced glycation end-products and response to mechanical loading between males and females. Identification of proteomic differences between male and female PT and ACL has identified novel pathways which may lead to improved understanding of differential ACL injury and re-injury risk between males and females.


PLOS ONE | 2015

Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells

Hector A. Saka; J. Will Thompson; Yi-Shan Chen; Laura G. Dubois; Joel T. Haas; Arthur Moseley; Raphael H. Valdivia

The obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an “inclusion”. Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.


Cell Reports | 2016

The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

Michael N. Davies; Lilja Kjalarsdottir; J. Will Thompson; Laura G. Dubois; Robert D. Stevens; Olga Ilkayeva; M. Julia Brosnan; Timothy P. Rolph; Paul A. Grimsrud; Deborah M. Muoio

Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.


PLOS Genetics | 2015

Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis.

Xiaohu Tang; Melissa M. Keenan; Jianli Wu; Chih-An Lin; Laura G. Dubois; J. Will Thompson; Stephen J. Freedland; Susan K. Murphy; Jen-Tsan Chi

Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine/glycine-dependent creatine biosynthesis.

Collaboration


Dive into the Laura G. Dubois's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge