Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Gathercole is active.

Publication


Featured researches published by Laura Gathercole.


Diabetes | 2009

11β-Hydroxysteroid Dehydrogenase Type 1 Regulates Glucocorticoid-Induced Insulin Resistance in Skeletal Muscle

Stuart Morgan; Mark Sherlock; Laura Gathercole; Gareth G. Lavery; Carol Lenaghan; Iwona Bujalska; David Laber; Alice Yu; Gemma Convey; Rachel M. Mayers; Krisztina Hegyi; Jaswinder K. Sethi; Paul M. Stewart; David M. Smith; Jeremy W. Tomlinson

OBJECTIVE Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11β-HSD1 inhibitors improve insulin sensitivity. RESEARCH DESIGN AND METHODS Rodent and human cell cultures, whole-tissue explants, and animal models were used to determine the impact of glucocorticoids and selective 11β-HSD1 inhibition upon insulin signaling and action. RESULTS Dexamethasone decreased insulin-stimulated glucose uptake, decreased IRS1 mRNA and protein expression, and increased inactivating pSer307 insulin receptor substrate (IRS)-1. 11β-HSD1 activity and expression were observed in human and rodent myotubes and muscle explants. Activity was predominantly oxo-reductase, generating active glucocorticoid. A1 (selective 11β-HSD1 inhibitor) abolished enzyme activity and blocked the increase in pSer307 IRS1 and reduction in total IRS1 protein after treatment with 11DHC but not corticosterone. In C57Bl6/J mice, the selective 11β-HSD1 inhibitor, A2, decreased fasting blood glucose levels and improved insulin sensitivity. In KK mice treated with A2, skeletal muscle pSer307 IRS1 decreased and pThr308 Akt/PKB increased. In addition, A2 decreased both lipogenic and lipolytic gene expression. CONCLUSIONS Prereceptor facilitation of glucocorticoid action via 11β-HSD1 increases pSer307 IRS1 and may be crucial in mediating insulin resistance in skeletal muscle. Selective 11β-HSD1 inhibition decreases pSer307 IRS1, increases pThr308 Akt/PKB, and decreases lipogenic and lipolytic gene expression that may represent an important mechanism underpinning their insulin-sensitizing action.


Proceedings of the National Academy of Sciences of the United States of America | 2014

11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess

Stuart Morgan; Emma McCabe; Laura Gathercole; Zaki Hassan-Smith; Dean Larner; Iwona Bujalska; Paul M. Stewart; Jeremy W. Tomlinson; Gareth G. Lavery

Significance Glucocorticoids are widely prescribed for their anti-inflammatory properties but have Cushingoid side effects that contribute significantly to patient morbidity and mortality. Here we present data to demonstrate that the adverse side-effect profile associated with exogenous active glucocorticoid (GC) administration (including glucose intolerance, hyperinsulinemia, hypertension, hepatic steatosis, increased adiposity, and myopathy) is prevented by global deletion of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in mice. This study not only defines a significant shift in our understanding of the physiological and molecular mechanisms underpinning the adverse side effects associated with GC use but also raises the possibility of targeting 11β-HSD1 as a novel adjunctive therapy in the treatment of Cushing syndrome. The adverse metabolic effects of prescribed and endogenous glucocorticoid (GC) excess, Cushing syndrome, create a significant health burden. We found that tissue regeneration of GCs by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), rather than circulating delivery, is critical to developing the phenotype of GC excess; 11β-HSD1 KO mice with circulating GC excess are protected from the glucose intolerance, hyperinsulinemia, hepatic steatosis, adiposity, hypertension, myopathy, and dermal atrophy of Cushing syndrome. Whereas liver-specific 11β-HSD1 KO mice developed a full Cushingoid phenotype, adipose-specific 11β-HSD1 KO mice were protected from hepatic steatosis and circulating fatty acid excess. These data challenge our current view of GC action, demonstrating 11β-HSD1, particularly in adipose tissue, is key to the development of the adverse metabolic profile associated with circulating GC excess, offering 11β-HSD1 inhibition as a previously unidentified approach to treat Cushing syndrome.


Endocrine Reviews | 2013

11β-Hydroxysteroid Dehydrogenase 1: Translational and Therapeutic Aspects

Laura Gathercole; Gareth G. Lavery; Stuart Morgan; Mark S. Cooper; Alexandra J Sinclair; Jeremy W. Tomlinson; Paul M. Stewart

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) interconverts the inactive glucocorticoid cortisone and its active form cortisol. It is widely expressed and, although bidirectional, in vivo it functions predominantly as an oxoreductase, generating active glucocorticoid. This allows glucocorticoid receptor activation to be regulated at a prereceptor level in a tissue-specific manner. In this review, we will discuss the enzymology and molecular biology of 11β-HSD1 and the molecular basis of cortisone reductase deficiencies. We will also address how altered 11β-HSD1 activity has been implicated in a number of disease states, and we will explore its role in the physiology and pathologies of different tissues. Finally, we will address the current status of selective 11β-HSD1 inhibitors that are in development and being tested in phase II trials for patients with the metabolic syndrome. Although the data are preliminary, therapeutic inhibition of 11β-HSD1 is also an exciting prospect for the treatment of a variety of other disorders such as osteoporosis, glaucoma, intracranial hypertension, and cognitive decline.


Journal of Hepatology | 2016

Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis.

Matthew J. Armstrong; Diana Hull; Kathy Guo; Darren Barton; Jonathan Hazlehurst; Laura Gathercole; Maryam Nasiri; Jinglei Yu; Stephen C. L. Gough; Philip N. Newsome; Jeremy W. Tomlinson

Graphical abstract


PLOS ONE | 2011

Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue.

Laura Gathercole; Stuart Morgan; Iwona Bujalska; David Hauton; Paul M. Stewart; Jeremy W. Tomlinson

Patients with glucocorticoid (GC) excess, Cushings syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc) and omental (om) adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM) of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.


Journal of Endocrinology | 2008

A novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor prevents human adipogenesis

Iwona Bujalska; Laura Gathercole; Jeremy W. Tomlinson; C Darimont; J Ermolieff; Andrea Fanjul; Paul A. Rejto; Paul M. Stewart

Glucocorticoid excess increases fat mass, preferentially within omental depots; yet circulating cortisol concentrations are normal in most patients with metabolic syndrome (MS). At a pre-receptor level, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates cortisol from cortisone locally within adipose tissue, and inhibition of 11β-HSD1 in liver and adipose tissue has been proposed as a novel therapy to treat MS by reducing hepatic glucose output and adiposity. Using a transformed human subcutaneous preadipocyte cell line (Chub-S7) and human primary preadipocytes, we have defined the role of glucocorticoids and 11β-HSD1 in regulating adipose tissue differentiation. Human cells were differentiated with 1·0 μM cortisol (F), or cortisone (E) with or without 100 nM of a highly selective 11β-HSD1 inhibitor PF-877423. 11β-HSD1 mRNA expression increased across adipocyte differentiation (P<0·001, n=4), which was paralleled by an increase in 11β-HSD1 oxo-reductase activity (from nil on day 0 to 5·9±1.9 pmol/mg per h on day 16, P<0·01, n=7). Cortisone enhanced adipocyte differentiation; fatty acid-binding protein 4 expression increased 312-fold (P<0·001) and glycerol-3-phosphate dehydrogenase 47-fold (P<0·001) versus controls. This was abolished by co-incubation with PF-877423. In addition, cellular lipid content decreased significantly. These findings were confirmed in the primary cultures of human subcutaneous preadipocytes. The increase in 11β-HSD1 mRNA expression and activity is essential for the induction of human adipogenesis. Blocking adipogenesis with a novel and specific 11β-HSD1 inhibitor may represent a novel approach to treat obesity in patients with MS.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

Targeting the pre-receptor metabolism of cortisol as a novel therapy in obesity and diabetes.

Laura Gathercole; Paul M. Stewart

Due to its impact upon health and the economy, the mechanisms that contribute to the pathogenesis of obesity and the metabolic syndrome are under intense scrutiny. In addition to understanding the pathogenesis of disease it is important to design and trial novel therapies. Patients with cortisol excess, Cushings syndrome, have a phenotype similar to that of the metabolic syndrome and as a result there is much interest the manipulation of glucocorticoid (GC) action as a therapeutic strategy. Intracellular GC levels are regulated by 11β-hydroxysteroid dehydrogenase (11β-HSD1) which converts inactive cortisone to cortisol, thereby increasing local GC action. There is an abundance of data implicating 11β-HSD1 in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and 11β-HSD1 is an attractive therapeutic target. Selective 11β-HSD1 inhibitors, which do not act upon 11β-HSD2 (which inactivates cortisol to cortisone) are in development. So far studies have primarily been carried out in rodents, with results showing improvements in metabolic profile. Data are now beginning to emerge from human studies and the results are promising.


Endocrinology | 2012

Lack of Significant Metabolic Abnormalities in Mice with Liver-Specific Disruption of 11β-Hydroxysteroid Dehydrogenase Type 1.

Gareth G. Lavery; Agnieszka Zielinska; Laura Gathercole; Beverly Hughes; Nina Semjonous; Phillip Guest; Khalid Saqib; Mark Sherlock; Gary M. Reynolds; Stuart Morgan; Jeremy W. Tomlinson; Elizabeth A. Walker; Elizabeth Rabbitt; Paul M. Stewart

Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA activation and to a crucial role of extrahepatic 11β-HSD1 expression, highlighting the contribution of cross talk between GC target tissues in determining metabolic phenotype.


The Journal of Clinical Endocrinology and Metabolism | 2013

Glucocorticoids Fail to Cause Insulin Resistance in Human Subcutaneous Adipose Tissue In Vivo

Jonathan Hazlehurst; Laura Gathercole; Maryam Nasiri; Matthew J. Armstrong; Sarah Borrows; Jinglei Yu; Anton J. M. Wagenmakers; Paul M. Stewart; Jeremy W. Tomlinson

CONTEXT It is widely believed that glucocorticoids cause insulin resistance in all tissues. We have previously demonstrated that glucocorticoids cause insulin sensitization in human adipose tissue in vitro and induce insulin resistance in skeletal muscle. OBJECTIVE Our aim was to determine whether glucocorticoids have tissue-specific effects on insulin sensitivity in vivo. DESIGN Fifteen healthy volunteers were recruited into a double-blind, randomized, placebo-controlled, crossover study, receiving both an overnight hydrocortisone and saline infusion. The tissue-specific actions of insulin were determined using paired 2-step hyperinsulinemic euglycemic clamps incorporating stable isotopes with concomitant adipose tissue microdialysis. SETTING The study was performed in the Wellcome Trust Clinical Research Facility, Queen Elizabeth Hospital, Birmingham, United Kingdom. MAIN OUTCOME MEASURES The sensitivity of sc adipose tissue to insulin action was measured. RESULTS Hydrocortisone induced systemic insulin resistance but failed to cause sc adipose tissue insulin resistance as measured by suppression of adipose tissue lipolysis and enhanced insulin-stimulated pyruvate generation. In primary cultures of human hepatocytes, glucocorticoids increased insulin-stimulated p-ser473akt/protein kinase B. Similarly, glucocorticoids enhanced insulin-stimulated p-ser473akt/protein kinase B and increased Insulin receptor substrate 2 mRNA expression in sc, but not omental, intact human adipocytes, suggesting a depot-specificity of action. CONCLUSIONS This study represents the first description of sc adipose insulin sensitization by glucocorticoids in vivo and demonstrates tissue-specific actions of glucocorticoids to modify insulin action. It defines an important advance in our understanding of the actions of both endogenous and exogenous glucocorticoids and may have implications for the development and targeting of future glucocorticoid therapies.


Antiviral Therapy | 2009

Adipocyte differentiation, mitochondrial gene expression and fat distribution : differences between zidovudine and tenofovir after 6 months

M. Boothby; McGee Kc; Jeremy W. Tomlinson; Laura Gathercole; McTernan Pg; F Shojaee-Moradie; Umpleby Am; Peter Nightingale; Shahmanesh M

BACKGROUND Abnormal lipid metabolism and cell oxidative mechanisms are reported in patients on antiretroviral treatment. We compared the expression of several key adipocyte genes in HIV-infected patients randomized to antiretroviral regimens containing zidovudine (AZT) or tenofovir disoproxil fumarate (TDF). METHODS Subcutaneous fat was sampled from 32 HIV-positive treatment-naive patients before and 6 months after randomization to AZT/lamivudine/efavirenz (n=15) or TDF/emtricitabine/efavirenz (n=17) plus 15 HIV-negative matched controls. Expression of genes involved in adipocyte differentiation, lipid metabolism, mitochondrial function and glucocorticoid generation were profiled using real-time PCR. Lipoprotein lipase and hepatic lipase activity were assessed. RESULTS Before treatment, 11beta-hydroxysteroid dehydrogenase expression was down-regulated compared with controls. Following 6 months treatment with AZT, there was a significant increase in visceral adipose tissue (VAT; P=0.02) and the ratio of VAT to subcutaneous adipose tissue (P=0.008), down-regulation of cytochrome B (P=0.003) and cytochrome oxidase (COX)-3 gene expression (P=0.03), up-regulation of NADH dehydrogenase (P=0.008) and nuclear-encoded COX-4 (complex IV) gene expression (P=0.012). Genes involved with adipocyte cortisol generation, fatty acid metabolism and the tricarboxylic acid cycle were up-regulated. In the TDF-treated patients, there was no significant change in regional body fat or mitochondrial genes compared with pretreatment values. Changes in the expression of genes involved with cortisol and fatty acid metabolism were less marked with TDF. CONCLUSIONS Interference with the mitochondrial electron transport chain appears to occur early in an AZT-containing regimen and occurs at a time when there is increased visceral fat and up-regulation of genes involved with adipocyte differentiation and fatty acid flux.

Collaboration


Dive into the Laura Gathercole's collaboration.

Top Co-Authors

Avatar

Jeremy Tomlinson

Queen Elizabeth Hospital Birmingham

View shared research outputs
Top Co-Authors

Avatar

Iwona Bujalska

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Stuart Morgan

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Stewart

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryam Nasiri

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge