Laura Georgiana Necula
Romanian Academy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Georgiana Necula.
World Journal of Stem Cells | 2015
Denisa L Dragu; Laura Georgiana Necula; Coralia Bleotu; Carmen C. Diaconu; Mihaela Chivu-Economescu
Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers.
Translational Research | 2009
Mihaela Chivu; Simona Dima; Cosmin I. Stancu; Camelia Dobrea; Valentina Uscatescu; Laura Georgiana Necula; Coralia Bleotu; Cristiana Tanase; Radu Albulescu; Carmen Ardeleanu; Irinel Popescu
Recent findings demonstrated that stem cells could be harvested from a patient and used to repair his or her own damaged liver. Additionally, stem cells may be manipulated in vitro to induce hepatic differentiation. The current study aims to determine the differentiation efficacy of various liver-specific factors (hepatocyte growth factor, Insulin-Transferrin-Selenium, dexamethasone, and nicotinamide) used for stem cell differentiation into hepatocyte-like cells. Human mesenchymal stem cells were exposed to different media containing these compounds added individually or in various combinations. Hepatic differentiation was assessed via quantitative reverse transcription-polymerase chain reaction and immunocytochemical staining for stemness or liver-specific genes and proteins, including albumin, cytokeratins 18 and 19, HepPar-1, alpha-fetoprotein, and nestin. In addition, functional tests for glycogen storage, urea production, glucose, and albumin synthesis were also performed. The expression profiles of albumin, alpha-fetoprotein, and cytokeratin 19 demonstrated that when hepatocyte growth factor, nicotinamide, or dexamethasone were added individually, incomplete hepatocyte differentiation was achieved; the obtained cell populations contained progenitors that expressed both hepatic (albumin) and biliary (cytokeratin 19) markers, as well as alpha-fetoprotein. Hepatocyte growth factor and nicotinamide were the factors with the most hepatogenic potential. When all factors were added to the culture, cells exhibited features that closely resembled human adult hepatocytes as determined by their gene expression patterns (albumin, HepPar-1, and alpha-fetoprotein, but not cytokeratin 19) and functional testing. These cells with hepatic function may become important tools for liver transplant procedures, liver development studies, and pharmacologic research.
Mediators of Inflammation | 2013
Radu Albulescu; Elena Codrici; Ionela Daniela Popescu; Simona Mihai; Laura Georgiana Necula; Daniel Petrescu; Mihaela Teodoru; Cristiana Tanase
Inflammation represents the immune system response to external or internal aggressors such as injury or infection in certain tissues. The bodys response to cancer has many parallels with inflammation and repair; the inflammatory cells and cytokines present in tumours are more likely to contribute to tumour growth, progression, and immunosuppression, rather than in building an effective antitumour defence. Using new proteomic technology, we have investigated serum profile of pro- (IL-1β, IL-6, IL-8, IL-12, GM-CSF, and TNF-α) and anti-inflammatory cytokines (IL-4, IL-10), along with angiogenic factors (VEGF, bFGF) in order to assess tumoural aggressiveness. Our results indicate significant dysregulation in serum levels of cytokines and angiogenic factors, with over threefold upregulation of IL-6, IL-1β, TNF-α, and IL-10 and up to twofold upregulation of VEGF, FGF-2, IL-8, IL-2, and GM-CSF. These molecules are involved in tumour progression and aggressiveness, and are also involved in a generation of disease associated pain.
World Journal of Gastroenterology | 2014
Cristiana Tanase; Ana Iulia Neagu; Laura Georgiana Necula; Cristina Mambet; Ana-Maria Enciu; Bogdan Calenic; Maria Linda Cruceru; Radu Albulescu
Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs.
Oncotarget | 2017
Cristiana Tanase; Elena Codrici; Ionela Daniela Popescu; Simona Mihai; Ana-Maria Enciu; Laura Georgiana Necula; Adrian Preda; Gener Ismail; Radu Albulescu
The clinical and fundamental research in prostate cancer - the most common urological cancer in men - is currently entering the proteomic and genomic era. The focus has switched from one single marker (PSA) to panels of biomarkers (including proteins involved in ribosomal function and heat shock proteins). Novel genetic markers (such as Transmembrane protease serine 2 (TMPRSS2)-ERG fusion gene mRNA) or prostate cancer gene 3 (PCA3) had already entered the clinical practice, raising the question whether subsequent protein changes impact the evolution of the disease and the response to treatment. Proteomic technologies such as MALDI-MS, SELDI-MS, i-TRAQ allow a qualitative/quantitative analysis of the proteome variations, in both serum and tumor tissue. A new trend in prostate cancer research is proteomic analysis of prostasomes (prostate-specific exosomes), for the discovery of new biomarkers. This paper provides an update of novel clinical tests used in research and clinical diagnostic, as well as of potential tissue or fluid biomarkers provided by extensive proteomic research data.
OncoTargets and Therapy | 2014
Cristiana Tanase; Radu Albulescu; Elena Codrici; Bogdan Calenic; Ionela Daniela Popescu; Simona Mihai; Laura Georgiana Necula; Maria Linda Cruceru; Mihail Eugen Hinescu
Purpose Apoptotic protease-activating factor-1 (APAF-1) and cathepsin B are important functional proteins in apoptosis; the former is involved in the intrinsic (mitochondrial) pathway, while the latter is associated with both intrinsic and extrinsic pathways. Changes in the expression of apoptosome-related proteins could be useful indicators of tumor development since a priori defects in the mitochondrial pathway might facilitate the inception and progression of human neoplasms. Our aim was to evaluate the profiles of APAF-1 and cathepsin B in relation with other molecules involved in apoptosis/proliferation and to correlate them with the aggressive behavior of invasive pituitary adenomas. Materials and methods APAF-1 and cathepsin B were assessed in tissue samples from 30 patients with pituitary adenomas, of which 16 were functional adenomas and 22 were invasive adenomas. Results A positive relationship between high proliferation and invasiveness was observed in invasive pituitary adenomas when compared to their noninvasive counterparts (Ki-67 labeling index – 4.72% versus 1.75%). Decreased expression of APAF-1 was recorded in most of the invasive adenomas with a high proliferation index, while the cathepsin B level was elevated in this group. We have noticed a negative correlation between the low level of APAF-1 and invasiveness (63.63%; P<0.01); at the same time, a positive correlation between cathepsin B expression and invasiveness (59.09%; P<0.01) was found. In all, 81.25% out of the total APAF-1-positive samples were cathepsin B negative (P<0.01); 76.92% out of the total cathepsin B-positive samples were APAF-1-negative (P<0.01). These results were reinforced by an apoptosis protein array examination, which showed inhibition of the extrinsic apoptotic pathway in an invasive pituitary adenoma. Conclusion A bidirectional–inverted relationship between APAF-1 and cathepsin B expressions was noticed. One might hypothesize that shifting the balance between mediators of cell death could result in changes in tumor behavior.
Future Oncology | 2015
Cristiana Tanase; Radu Albulescu; Elena Codrici; Ionela Daniela Popescu; Simona Mihai; Ana Maria Enciu; Maria Linda Cruceru; Adrian Claudiu Popa; Ana Iulia Neagu; Laura Georgiana Necula; Cristina Mambet; Monica Neagu
An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.
Journal of Immunoassay & Immunochemistry | 2015
Laura Georgiana Necula; Cristina Mambet; Radu Albulescu; Carmen C. Diaconu
Epigenetic processes including aberrant promoter methylation of tumor suppressor gene play a key role in gastric carcinogenesis. TET proteins are involved in DNA demethylation; many cancers, haematological or solid, present loss-of-function mutations and aberrant expression/regulation of TET. In gastric cancer there are few studies reporting a decreased expression of TET and associations between these proteins and signaling pathways involved in carcinogenesis. Identifying connections between aberrant expression of TET, disruption of the balance between DNA methylation and demethylation and their association with gastric carcinogenesis might be useful for the development of novel therapeutic approaches.
World Journal of Stem Cells | 2018
Cristina Mambet; Mihaela Chivu-Economescu; Lilia Matei; Laura Georgiana Necula; Denisa L Dragu; Coralia Bleotu; Carmen C. Diaconu
Acute myeloid leukemia (AML) is an aggressive malignant disease defined by abnormal expansion of myeloid blasts. Despite recent advances in understanding AML pathogenesis and identifying their molecular subtypes based on somatic mutations, AML is still characterized by poor outcomes, with a 5-year survival rate of only 30%-40%, the majority of the patients dying due to AML relapse. Leukemia stem cells (LSC) are considered to be at the root of chemotherapeutic resistance and AML relapse. Although numerous studies have tried to better characterize LSCs in terms of surface and molecular markers, a specific marker of LSC has not been found, and still the most universally accepted phenotypic signature remains the surface antigens CD34+CD38- that is shared with normal hematopoietic stem cells. Animal models provides the means to investigate the factors responsible for leukemic transformation, the intrinsic differences between secondary post-myeloproliferative neoplasm AML and de novo AML, especially the signaling pathways involved in inflammation and hematopoiesis. However, AML proved to be one of the hematological malignancies that is difficult to engraft even in the most immunodeficient mice strains, and numerous ongoing attempts are focused to develop “humanized mice” that can support the engraftment of LSC. This present review is aiming to introduce the field of AML pathogenesis and the concept of LSC, to present the current knowledge on leukemic blasts surface markers and recent attempts to develop best AML animal models.
World Journal of Gastroenterology | 2018
Mihaela Chivu-Economescu; Lilia Matei; Laura Georgiana Necula; Denisa L Dragu; Coralia Bleotu; Carmen C. Diaconu
Gastric cancer (GC) is one of the most lethal and aggressive cancers, being the third cause of cancer related death worldwide. Even with radical gastrectomy and the latest generation of molecular chemotherapeutics, the numbers of recurrence and mortality remains high. This is due to its biological heterogeneity based on the interaction between multiple factors, from genomic to environmental factors, diet or infections with various pathogens. Therefore, understanding the molecular characteristics at a genomic level is critical to develop new treatment strategies. Recent advances in GC molecular classification provide the unique opportunity to improve GC therapy by exploiting the biomarkers and developing novel targeted therapy specific to each subtype. This article highlights the molecular characteristics of each subtype of gastric cancer that could be considered in shaping a therapeutic decision, and also presents the completed and ongoing clinical trials addressed to those targets. The implementation of the novel molecular classification system will allow a preliminary patient selection for clinical trials, a mandatory issue if it is desired to test the efficacy of a certain inhibitor to the given target. This will represent a substantial advance as well as a powerful tool for targeted therapy. Nevertheless, translating the scientific results into new personalized treatment opportunities is needed in order to improve clinical care, the survival and quality of life of patients with GC.