Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Germine is active.

Publication


Featured researches published by Laura Germine.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Human face recognition ability is specific and highly heritable

Jeremy Wilmer; Laura Germine; Christopher F. Chabris; Garga Chatterjee; Mark A. Williams; Eric Loken; Ken Nakayama; Bradley Duchaine

Compared with notable successes in the genetics of basic sensory transduction, progress on the genetics of higher level perception and cognition has been limited. We propose that investigating specific cognitive abilities with well-defined neural substrates, such as face recognition, may yield additional insights. In a twin study of face recognition, we found that the correlation of scores between monozygotic twins (0.70) was more than double the dizygotic twin correlation (0.29), evidence for a high genetic contribution to face recognition ability. Low correlations between face recognition scores and visual and verbal recognition scores indicate that both face recognition ability itself and its genetic basis are largely attributable to face-specific mechanisms. The present results therefore identify an unusual phenomenon: a highly specific cognitive ability that is highly heritable. Our results establish a clear genetic basis for face recognition, opening this intensively studied and socially advantageous cognitive trait to genetic investigation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Number sense across the lifespan as revealed by a massive Internet-based sample

Justin Halberda; Ryan Ly; Jeremy Wilmer; Daniel Q. Naiman; Laura Germine

It has been difficult to determine how cognitive systems change over the grand time scale of an entire life, as few cognitive systems are well enough understood; observable in infants, adolescents, and adults; and simple enough to measure to empower comparisons across vastly different ages. Here we address this challenge with data from more than 10,000 participants ranging from 11 to 85 years of age and investigate the precision of basic numerical intuitions and their relation to students’ performance in school mathematics across the lifespan. We all share a foundational number sense that has been observed in adults, infants, and nonhuman animals, and that, in humans, is generated by neurons in the intraparietal sulcus. Individual differences in the precision of this evolutionarily ancient number sense may impact school mathematics performance in children; however, we know little of its role beyond childhood. Here we find that population trends suggest that the precision of one’s number sense improves throughout the school-age years, peaking quite late at ∼30 y. Despite this gradual developmental improvement, we find very large individual differences in number sense precision among people of the same age, and these differences relate to school mathematical performance throughout adolescence and the adult years. The large individual differences and prolonged development of number sense, paired with its consistent and specific link to mathematics ability across the age span, hold promise for the impact of educational interventions that target the number sense.


Cognitive Neuropsychology | 2007

Family resemblance: Ten family members with prosopagnosia and within-class object agnosia

Bradley Duchaine; Laura Germine; Ken Nakayama

We report on neuropsychological testing done with a family in which many members reported severe face recognition impairments. These 10 individuals were high functioning in everyday life and performed normally on tests of low-level vision and high-level cognition. In contrast, they showed clear deficits with tests requiring face memory and judgements of facial similarity. They did not show deficits with all aspects of higher level visual processing as all tested performed normally on a challenging facial emotion recognition task and on a global–local letter identification task. On object memory tasks requiring recognition of particular cars and guns, they showed significant deficits so their recognition impairments were not restricted to facial identity. These results strongly suggest the existence of a genetic condition leading to a selective deficit of visual recognition.


Cognition | 2011

Where cognitive development and aging meet: Face learning ability peaks after age 30

Laura Germine; Bradley Duchaine; Ken Nakayama

Research on age-related cognitive change traditionally focuses on either development or aging, where development ends with adulthood and aging begins around 55 years. This approach ignores age-related changes during the 35 years in-between, implying that this period is uninformative. Here we investigated face recognition as an ability that may mature late relative to other abilities. Using data from over 60,000 participants, we traced the ability to learn new faces from pre-adolescence through middle age. In three separate experiments, we show that face learning ability improves until just after age 30 - even though other putatively related abilities (inverted face recognition and name recognition) stop showing age-related improvements years earlier. Our data provide the first behavioral evidence for late maturation of face processing and the dissociation of face recognition from other abilities over time demonstrates that studies on adult age development can provide insight into the organization and development of cognitive systems.


Social Cognitive and Affective Neuroscience | 2008

Mentalizing about emotion and its relationship to empathy

Christine I. Hooker; Sara C. Verosky; Laura Germine; Robert T. Knight

Mentalizing involves the ability to predict someone elses behavior based on their belief state. More advanced mentalizing skills involve integrating knowledge about beliefs with knowledge about the emotional impact of those beliefs. Recent research indicates that advanced mentalizing skills may be related to the capacity to empathize with others. However, it is not clear what aspect of mentalizing is most related to empathy. In this study, we used a novel, advanced mentalizing task to identify neural mechanisms involved in predicting a future emotional response based on a belief state. Subjects viewed social scenes in which one character had a False Belief and one character had a True Belief. In the primary condition, subjects were asked to predict what emotion the False Belief Character would feel if they had a full understanding about the situation. We found that neural regions related to both mentalizing and emotion were involved when predicting a future emotional response, including the superior temporal sulcus, medial prefrontal cortex, temporal poles, somatosensory related cortices (SRC), inferior frontal gyrus and thalamus. In addition, greater neural activity in primarily emotion-related regions, including right SRC and bilateral thalamus, when predicting emotional response was significantly correlated with more self-reported empathy. The findings suggest that predicting emotional response involves generating and using internal affective representations and that greater use of these affective representations when trying to understand the emotional experience of others is related to more empathy.


Psychological Science | 2015

When Does Cognitive Functioning Peak? The Asynchronous Rise and Fall of Different Cognitive Abilities Across the Life Span

Joshua K. Hartshorne; Laura Germine

Understanding how and when cognitive change occurs over the life span is a prerequisite for understanding normal and abnormal development and aging. Most studies of cognitive change are constrained, however, in their ability to detect subtle, but theoretically informative life-span changes, as they rely on either comparing broad age groups or sparse sampling across the age range. Here, we present convergent evidence from 48,537 online participants and a comprehensive analysis of normative data from standardized IQ and memory tests. Our results reveal considerable heterogeneity in when cognitive abilities peak: Some abilities peak and begin to decline around high school graduation; some abilities plateau in early adulthood, beginning to decline in subjects’ 30s; and still others do not peak until subjects reach their 40s or later. These findings motivate a nuanced theory of maturation and age-related decline, in which multiple, dissociable factors differentially affect different domains of cognition.


The Journal of Neuroscience | 2006

Amygdala response to facial expressions reflects emotional learning

Christine I. Hooker; Laura Germine; Robert T. Knight; Mark D'Esposito

The functional role of the human amygdala in the evaluation of emotional facial expressions is unclear. Previous animal and human research shows that the amygdala participates in processing positive and negative reinforcement as well as in learning predictive associations between stimuli and subsequent reinforcement. Thus, amygdala response to facial expressions could reflect the processing of primary reinforcement or emotional learning. Here, using functional magnetic resonance imaging, we tested the hypothesis that amygdala response to facial expressions is driven by emotional association learning. We show that the amygdala is more responsive to learning object–emotion associations from happy and fearful facial expressions than it is to the presentation of happy and fearful facial expressions alone. The results provide evidence that the amygdala uses social signals to rapidly and flexibly learn threatening and rewarding associations that ultimately serve to enhance survival.


Cognitive Neuropsychology | 2012

Capturing specific abilities as a window into human individuality: the example of face recognition.

Jeremy Wilmer; Laura Germine; Christopher F. Chabris; Garga Chatterjee; Margaret E. Gerbasi; Ken Nakayama

Proper characterization of each individuals unique pattern of strengths and weaknesses requires good measures of diverse abilities. Here, we advocate combining our growing understanding of neural and cognitive mechanisms with modern psychometric methods in a renewed effort to capture human individuality through a consideration of specific abilities. We articulate five criteria for the isolation and measurement of specific abilities, then apply these criteria to face recognition. We cleanly dissociate face recognition from more general visual and verbal recognition. This dissociation stretches across ability as well as disability, suggesting that specific developmental face recognition deficits are a special case of a broader specificity that spans the entire spectrum of human face recognition performance. Item-by-item results from 1,471 web-tested participants, included as supplementary information, fuel item analyses, validation, norming, and item response theory (IRT) analyses of our three tests: (a) the widely used Cambridge Face Memory Test (CFMT); (b) an Abstract Art Memory Test (AAMT), and (c) a Verbal Paired-Associates Memory Test (VPMT). The availability of this data set provides a solid foundation for interpreting future scores on these tests. We argue that the allied fields of experimental psychology, cognitive neuroscience, and vision science could fuel the discovery of additional specific abilities to add to face recognition, thereby providing new perspectives on human individuality.


NeuroImage | 2011

Social anhedonia is associated with neural abnormalities during face emotion processing.

Laura Germine; Lúcia Garrido; Lori Bruce; Christine I. Hooker

Human beings are social organisms with an intrinsic desire to seek and participate in social interactions. Social anhedonia is a personality trait characterized by a reduced desire for social affiliation and reduced pleasure derived from interpersonal interactions. Abnormally high levels of social anhedonia prospectively predict the development of schizophrenia and contribute to poorer outcomes for schizophrenia patients. Despite the strong association between social anhedonia and schizophrenia, the neural mechanisms that underlie individual differences in social anhedonia have not been studied and are thus poorly understood. Deficits in face emotion recognition are related to poorer social outcomes in schizophrenia, and it has been suggested that face emotion recognition deficits may be a behavioral marker for schizophrenia liability. In the current study, we used functional magnetic resonance imaging (fMRI) to see whether there are differences in the brain networks underlying basic face emotion processing in a community sample of individuals low vs. high in social anhedonia. We isolated the neural mechanisms related to face emotion processing by comparing face emotion discrimination with four other baseline conditions (identity discrimination of emotional faces, identity discrimination of neutral faces, object discrimination, and pattern discrimination). Results showed a group (high/low social anhedonia) × condition (emotion discrimination/control condition) interaction in the anterior portion of the rostral medial prefrontal cortex, right superior temporal gyrus, and left somatosensory cortex. As predicted, high (relative to low) social anhedonia participants showed less neural activity in face emotion processing regions during emotion discrimination as compared to each control condition. The findings suggest that social anhedonia is associated with abnormalities in networks responsible for basic processes associated with social cognition, and provide a starting point for understanding the neural basis of social motivation and our drive to seek social affiliation.


Psychological Medicine | 2011

Face emotion recognition is related to individual differences in psychosis-proneness

Laura Germine; Christine I. Hooker

BACKGROUND Deficits in face emotion recognition (FER) in schizophrenia are well documented, and have been proposed as a potential intermediate phenotype for schizophrenia liability. However, research on the relationship between psychosis vulnerability and FER has mixed findings and methodological limitations. Moreover, no study has yet characterized the relationship between FER ability and level of psychosis-proneness. If FER ability varies continuously with psychosis-proneness, this suggests a relationship between FER and polygenic risk factors. METHOD We tested two large internet samples to see whether psychometric psychosis-proneness, as measured by the Schizotypal Personality Questionnaire-Brief (SPQ-B), is related to differences in face emotion identification and discrimination or other face processing abilities. RESULTS Experiment 1 (n=2332) showed that psychosis-proneness predicts face emotion identification ability but not face gender identification ability. Experiment 2 (n=1514) demonstrated that psychosis-proneness also predicts performance on face emotion but not face identity discrimination. The tasks in Experiment 2 used identical stimuli and task parameters, differing only in emotion/identity judgment. Notably, the relationships demonstrated in Experiments 1 and 2 persisted even when individuals with the highest psychosis-proneness levels (the putative high-risk group) were excluded from analysis. CONCLUSIONS Our data suggest that FER ability is related to individual differences in psychosis-like characteristics in the normal population, and that these differences cannot be accounted for by differences in face processing and/or visual perception. Our results suggest that FER may provide a useful candidate intermediate phenotype.

Collaboration


Dive into the Laura Germine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua K. Hartshorne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge