Laura Glendinning
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Glendinning.
Parasitology | 2014
Laura Glendinning; Norman Nausch; Andrew Free; David W. Taylor; Francisca Mutapi
Human gastrointestinal bacteria often share their environment with parasitic worms, allowing physical and physiological interaction between the two groups. Such associations have the potential to affect host health as well as the bacterial and helminth populations. Although still in its early stages, research on the interaction between the microbiome and parasitic helminths in humans offers the potential to improve health by manipulating the microbiome. Previously, supplementation with various nutritional compounds has been found to increase the abundance of potentially beneficial gut commensal bacteria. Thus, nutritional microbiome manipulation to produce an environment which may decrease malnutrition associated with helminth infection and/or aid host recovery from disease is conceivable. This review discusses the influence of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human hosts overall health. It also discusses changes occurring in the microbiota upon helminth infections and the underlying mechanisms leading to these changes. There are still significant knowledge gaps which need to be filled before meaningful progress can be made in translating knowledge from studying the human gut microbiome into therapeutic strategies. Ultimately this review aims to discuss our current knowledge as well as highlight areas requiring further investigation.
Applied and Environmental Microbiology | 2018
Jolinda Pollock; Laura Glendinning; Trong Wisedchanwet; Michael Watson
ABSTRACT The development and continuous improvement of high-throughput sequencing platforms have stimulated interest in the study of complex microbial communities. Currently, the most popular sequencing approach to study microbial community composition and dynamics is targeted 16S rRNA gene metabarcoding. To prepare samples for sequencing, there are a variety of processing steps, each with the potential to introduce bias at the data analysis stage. In this short review, key information from the literature pertaining to each processing step is described, and consequently, general recommendations for future 16S rRNA gene metabarcoding experiments are made.
Applied and Environmental Microbiology | 2016
Laura Glendinning; Steven H. Wright; Jolinda Pollock; Peter Tennant; David Collie; Gerry McLachlan
ABSTRACT Sequencing technologies have recently facilitated the characterization of bacterial communities present in lungs during health and disease. However, there is currently a dearth of information concerning the variability of such data in health both between and within subjects. This study seeks to examine such variability using healthy adult sheep as our model system. Protected specimen brush samples were collected from three spatially disparate segmental bronchi of six adult sheep (age, 20 months) on three occasions (day 0, 1 month, and 3 months). To further explore the spatial variability of the microbiotas, more-extensive brushing samples (n = 16) and a throat swab were taken from a separate sheep. The V2 and V3 hypervariable regions of the bacterial 16S rRNA genes were amplified and sequenced via Illumina MiSeq. DNA sequences were analyzed using the mothur software package. Quantitative PCR was performed to quantify total bacterial DNA. Some sheep lungs contained dramatically different bacterial communities at different sampling sites, whereas in others, airway microbiotas appeared similar across the lung. In our spatial variability study, we observed clustering related to the depth within the lung from which samples were taken. Lung depth refers to increasing distance from the glottis, progressing in a caudal direction. We conclude that both host influence and local factors have impacts on the composition of the sheep lung microbiota. IMPORTANCE Until recently, it was assumed that the lungs were a sterile environment which was colonized by microbes only during disease. However, recent studies using sequencing technologies have found that there is a small population of bacteria which exists in the lung during health, referred to as the “lung microbiota.” In this study, we characterize the variability of the lung microbiotas of healthy sheep. Sheep not only are economically important animals but also are often used as large animal models of human respiratory disease. We conclude that, while host influence does play a role in dictating the types of microbes which colonize the airways, it is clear that local factors also play an important role in this regard. Understanding the nature and influence of these factors will be key to understanding the variability in, and functional relevance of, the lung microbiota.
Veterinary Research | 2015
Bruce McGorum; R. Scott Pirie; Laura Glendinning; Gerry McLachlan; James S. Metcalf; Sandra Anne Banack; Paul Alan Cox; Geoffrey A. Codd
While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins β-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.
PLOS ONE | 2015
David Collie; Laura Glendinning; John R. W. Govan; Steven H. Wright; Elisabeth M. Thornton; Peter Tennant; Catherine Doherty; Gerry McLachlan
Background Exacerbations associated with chronic lung infection with Pseudomonas aeruginosa are a major contributor to morbidity, mortality and premature death in cystic fibrosis. Such exacerbations are treated with antibiotics, which generally lead to an improvement in lung function and reduced sputum P. aeruginosa density. This potentially suggests a role for the latter in the pathogenesis of exacerbations. However, other data suggesting that changes in P. aeruginosa sputum culture status may not reliably predict an improvement in clinical status, and data indicating no significant changes in either total bacterial counts or in P. aeruginosa numbers in sputum samples collected prior to pulmonary exacerbation sheds doubt on this assumption. We used our recently developed lung segmental model of chronic Pseudomonas infection in sheep to investigate the lung microbiota changes associated with chronic P. aeruginosa lung infection and the impact of systemic therapy with colistimethate sodium (CMS). Methodology/Principal Findings We collected protected specimen brush (PSB) samples from sheep (n = 8) both prior to and 14 days after establishment of chronic local lung infection with P aeruginosa. Samples were taken from both directly infected lung segments (direct) and segments spatially remote to such sites (remote). Four sheep were treated with daily intravenous injections of CMS between days 7 and 14, and four were treated with a placebo. Necropsy examination at d14 confirmed the presence of chronic local lung infection and lung pathology in every direct lung segment. The predominant orders in lung microbiota communities before infection were Bacillales, Actinomycetales and Clostridiales. While lung microbiota samples were more likely to share similarities with other samples derived from the same lung, considerable within- and between-animal heterogeneity could be appreciated. Pseudomonadales joined the aforementioned list of predominant orders in lung microbiota communities after infection. Whilst treatment with CMS appeared to have little impact on microbial community composition after infection, or the change undergone by communities in reaching that state, when Gram negative organisms (excluding Pseudomonadales) were considered together as a group there was a significant decrease in their relative proportion that was only observed in the sheep treated with CMS. With only one exception the reduction was seen in both direct and remote lung segments. This reduction, coupled with generally increasing or stable levels of Pseudomonadales, meant that the proportion of the latter relative to total Gram negative bacteria increased in all bar one direct and one remote lung segment. Conclusions/Significance The proportional increase in Pseudomonadales relative to other Gram negative bacteria in the lungs of sheep treated with systemic CMS highlights the potential for such therapies to inadvertently select or create a niche for bacteria seeding from a persistent source of chronic infection.
Frontiers in Cellular and Infection Microbiology | 2014
Laura Glendinning; Andrew Free
The term “supraorganism” (which we prefer to the more common but slightly less informative “superorganism”) refers to a collection of individuals which behave as a single unit with enhanced function. It was originally applied to groups of genetically-identical individuals such as social insect colonies (Moritz and Fuchs, 1998), but has since been expanded to include systems comprised of taxonomically-diverse species from all domains of life, as well as viruses (Salvucci, 2012). The human intestine plays host to up to 1014 bacteria, which outnumber the hosts own cells by around an order of magnitude: microbial concentrations in the colon can reach 1012 cells per gram. There are also large numbers of viruses, predominantly bacteriophages, with at least 109 viral particles present per gram of human feces. Current evidence presents a picture of prevailing homoeostasis between host, microbiome and virome consistent with the description of a supraorganism, which can nevertheless enter a disrupted alternative state termed “dysbiosis.” Here we review this evidence and the potential for the adoption of supra-organismal approaches toward the treatment and prevention of dysbiosis in the future.
Applied and Environmental Microbiology | 2017
Laura Glendinning; Steven H. Wright; Peter Tennant; Andrew C. Gill; David Collie; Gerry McLachlan
ABSTRACT The lung microbiota is commonly sampled using relatively invasive bronchoscopic procedures. Exhaled breath condensate (EBC) collection potentially offers a less invasive alternative for lung microbiota sampling. We compared lung microbiota samples retrieved by protected specimen brushings (PSB) and exhaled breath condensate collection. We also sought to assess whether aerosolized antibiotic treatment would influence the lung microbiota and whether this change could be detected in EBC. EBC was collected from 6 conscious sheep and then from the same anesthetized sheep during mechanical ventilation. Following the latter EBC collection, PSB samples were collected from separate sites within each sheep lung. On the subsequent day, each sheep was then treated with nebulized colistimethate sodium. Two days after nebulization, EBC and PSB samples were again collected. Bacterial DNA was quantified using 16S rRNA gene quantitative PCR. The V2-V3 region of the 16S rRNA gene was amplified by PCR and sequenced using Illumina MiSeq. Quality control and operational taxonomic unit (OTU) clustering were performed with mothur. The EBC samples contained significantly less bacterial DNA than the PSB samples. The EBC samples from anesthetized animals clustered separately by their bacterial community compositions in comparison to the PSB samples, and 37 bacterial OTUs were identified as differentially abundant between the two sample types. Despite only low concentrations of colistin being detected in bronchoalveolar lavage fluid, PSB samples were found to differ by their bacterial compositions before and after colistimethate sodium treatment. Our findings indicate that microbiota in EBC samples and PSB samples are not equivalent. IMPORTANCE Sampling of the lung microbiota usually necessitates performing bronchoscopic procedures that involve a hospital visit for human participants and the use of trained staff. The inconvenience and perceived discomfort of participating in this kind of research may deter healthy volunteers and may not be a safe option for patients with advanced lung disease. This study set out to evaluate a less invasive method for collecting lung microbiota samples by comparing samples taken via protected specimen brushings (PSB) to those taken via exhaled breath condensate (EBC) collection. We found that there was less bacterial DNA in EBC samples compared with that in PSB samples and that there were differences between the bacterial communities in the two sample types. We conclude that while EBC and PSB samples do not produce equivalent microbiota samples, the study of the EBC microbiota may still be of interest.
PLOS ONE | 2017
Laura Glendinning; Gerry McLachlan; Lonneke Vervelde
In this era of next generation sequencing technologies it is now possible to characterise the chicken respiratory microbiota without the biases inherent to traditional culturing techniques. However, little research has been performed in this area. In this study we characterise and compare buccal, nasal and lung microbiota samples from chickens in three different age groups using 16S rRNA gene analysis. Buccal and nasal swabs were taken from birds aged 2 days (n = 5), 3 weeks (n = 5) and 30 months (n = 6). Bronchoalveolar lavage (BAL) samples were also collected alongside reagent only controls. DNA was extracted from these samples and the V2-V3 region of the 16S rRNA gene was amplified and sequenced. Quality control and OTU clustering were performed in mothur. Bacterial DNA was quantified using qPCR, amplifying the V3 region of the 16S rRNA gene. We found significant differences between the quantity and types of bacteria sampled at the three different respiratory sites. We also found significant differences in the composition, richness and diversity of the bacterial communities in buccal, nasal and BAL fluid samples between age groups. We identified several bacteria which had previously been isolated from the chicken respiratory tract in culture based studies, including lactobacilli and staphylococci. However, we also identified bacteria which have not previously been cultured from the respiratory tract of the healthy chicken. We conclude that our study can be used as a baseline that future chicken respiratory microbiota studies can build upon.
Journal of Animal Science | 2018
Jolinda Pollock; David L. Gally; Laura Glendinning; Raksha Tiwari; Michael R. Hutchings; J.G.M. Houdijk
Abstract The primary aim of this work was to study potential effects of subclinical enterotoxigenic Escherichia coli (ETEC) exposure on porcine fecal microbiota composition, with a secondary aim of profiling temporal shifts in bacterial communities over the weaning transition period. 16S rRNA gene metabarcoding and quantitative PCR (qPCR) were used to profile the fecal microbiota and quantify ETEC excretion in the feces, respectively. Temporal shifts in fecal microbiota structure and stability were observed across the immediate postweaning period (P < 0.05), including significant shifts in the relative levels of specific bacterial phylotypes (P < 0.05). ETEC exposure did not change the fecal microbiota structure (P > 0.05), but significant variations in fecal community structure and stability were linked to variations in ETEC excretion level at particular time points (P < 0.05). In this study, marked temporal changes in microbiota structure and stability were evident over the short weaning transition period, with a relationship between ETEC excretion level and fecal microbiota composition being observed. This study has provided a detailed analysis of fecal microbiota dynamics in the pig, which should help to inform the development of novel management strategies for enteric disorders based on an improved understanding of microbial populations during the challenging postweaning period.
Mbio | 2017
Laura Glendinning; David Collie; Steven H. Wright; Kenny Rutherford; Gerry McLachlan