Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Herrero is active.

Publication


Featured researches published by Laura Herrero.


Hepatology | 2011

Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation †‡

Josep M. Orellana-Gavaldà; Laura Herrero; Maria Ida Malandrino; Astrid Pañeda; Maria Sol Rodríguez-Peña; Harald Petry; Guillermina Asins; Sander J. H. van Deventer; Fausto G. Hegardt; Dolors Serra

Obesity‐induced insulin resistance is associated with both ectopic lipid deposition and chronic, low‐grade adipose tissue inflammation. Despite their excess fat, obese individuals show lower fatty‐acid oxidation (FAO) rates. This has raised the question of whether burning off the excess fat could improve the obese metabolic phenotype. Here we used human‐safe nonimmunoreactive adeno‐associated viruses (AAV) to mediate long‐term hepatic gene transfer of carnitine palmitoyltransferase 1A (CPT1A), the key enzyme in fatty‐acid β‐oxidation, or its permanently active mutant form CPT1AM, to high‐fat diet‐treated and genetically obese mice. High‐fat diet CPT1A‐ and, to a greater extent, CPT1AM‐expressing mice showed an enhanced hepatic FAO which resulted in increased production of CO2, adenosine triphosphate, and ketone bodies. Notably, the increase in hepatic FAO not only reduced liver triacylglyceride content, inflammation, and reactive oxygen species levels but also systemically affected a decrease in epididymal adipose tissue weight and inflammation and improved insulin signaling in liver, adipose tissue, and muscle. Obesity‐induced weight gain, increase in fasting blood glucose and insulin levels, and augmented expression of gluconeogenic genes were restored to normal only 3 months after AAV treatment. Thus, CPT1A‐ and, to a greater extent, CPT1AM‐expressing mice were protected against obesity‐induced weight gain, hepatic steatosis, diabetes, and obesity‐induced insulin resistance. In addition, genetically obese db/db mice that expressed CPT1AM showed reduced glucose and insulin levels and liver steatosis. Conclusion: A chronic increase in liver FAO improves the obese metabolic phenotype, which indicates that AAV‐mediated CPT1A expression could be a potential molecular therapy for obesity and diabetes. (HEPATOLOGY 2011)


Antioxidants & Redox Signaling | 2013

Mitochondrial Fatty Acid Oxidation in Obesity

Dolors Serra; Paula Mera; Maria Ida Malandrino; Joan Francesc Mir; Laura Herrero

SIGNIFICANCE Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. RECENT ADVANCES Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. CRITICAL ISSUES This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. FUTURE DIRECTIONS The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.


American Journal of Tropical Medicine and Hygiene | 2011

West Nile and Usutu Viruses in Mosquitoes in Spain, 2008–2009

Ana Vázquez; Santiago Ruiz; Laura Herrero; Juana Moreno; Francisca Molero; Antonio Magallanes; María Paz Sánchez-Seco; Jordi Figuerola; Antonio Tenorio

West Nile virus lineage 1 (similar to the strains obtained from golden eagles in Spain, 2007) and Usutu virus (similar to the strains obtained from Culex pipiens in Spain, 2006) were detected in pools from Culex perexiguus collected in southern Spain in 2008 and 2009, respectively. This is the first detection and isolation of West Nile virus lineage 1 from mosquitoes in Spain.


American Journal of Physiology-endocrinology and Metabolism | 2015

Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.

Maria Ida Malandrino; Raquel Fucho; Minéia Weber; María Calderon-Dominguez; Joan Francesc Mir; Lorea Valcarcel; Xavier Escoté; María Gómez-Serrano; Belén Peral; Laia Salvadó; Sonia Fernández-Veledo; Núria Casals; Manuel Vázquez-Carrera; Francesc Villarroya; Joan Vendrell; Dolors Serra; Laura Herrero

Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.


Journal of Biological Chemistry | 2012

Ceramide Levels Regulated by Carnitine Palmitoyltransferase 1C Control Dendritic Spine Maturation and Cognition

Patricia Carrasco; Ignasi Sahún; Jerome McDonald; Sara Ramírez; Jordi Jacas; Esther Gratacós; Adriana Y. Sierra; Dolors Serra; Laura Herrero; Amparo Acker-Palmer; Fausto G. Hegardt; Mara Dierssen; Núria Casals

Background: CPT1C is highly expressed in hippocampus, but its cellular and physiological function is unknown. Results: CPT1C overexpression increases ceramide levels, and CPT1C deficiency impairs dendritic spine morphology and spatial learning. Conclusion: Regulation of ceramide levels by CPT1C is necessary for proper spine maturation. Significance: We describe a new function of CPT1C in cognition. The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning.


Biochemical Pharmacology | 2009

C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight

Paula Mera; Assia Bentebibel; Eduardo López-Viñas; Antonio G. Cordente; Chandrashekaran Gurunathan; David Sebastián; Irene Vázquez; Laura Herrero; Xavier Ariza; Paulino Gómez-Puertas; Guillermina Asins; Dolors Serra; Jordi Garcia; Fausto G. Hegardt

Central nervous system administration of C75 produces hypophagia and weight loss in rodents identifying C75 as a potential drug against obesity and type 2 diabetes. However, the mechanism underlying this effect is unknown. Here we show that C75-CoA is generated chemically, in vitro and in vivo from C75 and that it is a potent inhibitor of carnitine palmitoyltranferase 1 (CPT1), the rate-limiting step of fatty-acid oxidation. Three-D docking and kinetic analysis support the inhibitory effect of C75-CoA on CPT1. Central nervous system administration of C75 in rats led to C75-CoA production, inhibition of CPT1 and lower body weight and food intake. Our results suggest that inhibition of CPT1, and thus increased availability of fatty acids in the hypothalamus, contribute to the pharmacological mechanism of C75 to decrease food intake.


Adipocyte | 2016

Fatty acid metabolism and the basis of brown adipose tissue function

María Calderon-Dominguez; Joan Francesc Mir; Raquel Fucho; Minéia Weber; Dolors Serra; Laura Herrero

ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BATs morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy.


Free Radical Biology and Medicine | 2015

Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes.

M. Pilar Valdecantos; Pedro L. Prieto-Hontoria; Virginia Pardo; Teresa Mòdol; Beatriz Santamaria; Minéia Weber; Laura Herrero; Dolors Serra; Jordi Muntané; Antonio Cuadrado; María J. Moreno-Aliaga; J. Alfredo Martínez; Ángela M. Valverde

Excess of saturated free fatty acids, such as palmitic acid (PA), in hepatocytes has been implicated in nonalcoholic fatty liver disease. α-Lipoic acid (LA) is an antioxidant that protects against oxidative stress conditions. We have investigated the effects of LA in the early activation of oxidative and endoplasmic reticulum stress, lipid accumulation, and Nrf2-mediated antioxidant defenses in hepatocytes treated with PA or in rats fed a high-fat diet. In primary human hepatocytes, a lipotoxic concentration of PA triggered endoplasmic reticulum stress, induced the apoptotic transcription factor CHOP, and increased the percentage of apoptotic cells. Cotreatment with LA prevented these effects. Similar results were found in mouse hepatocytes in which LA attenuated PA-mediated activation of caspase 3 and reduced lipid accumulation by decreasing PA uptake and increasing fatty acid oxidation and lipophagy, thereby preventing lipoapoptosis. Moreover, LA augmented the proliferation capacity of hepatocytes after PA challenge. Antioxidant effects of LA ameliorated reactive oxygen species production and endoplasmic reticulum stress and protected against mitochondrial apoptosis in hepatocytes treated with PA. Cotreatment with PA and LA induced an early nuclear translocation of Nrf2 and activated antioxidant enzymes, whereas reduction of Nrf2 by siRNA abolished the benefit of LA on PA-induced lipoapoptosis. Importantly, posttreatment with LA reversed the established damage induced by PA in hepatocytes, as well as preventing obesity-induced oxidative stress and lipoapoptosis in rat liver. In conclusion, our work has revealed that in hepatocytes, Nrf2 is an essential early player in the rescue of oxidative stress by LA leading to protection against PA-mediated lipoapoptosis.


Obesity | 2015

Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity.

Martín Alcalá; Isabel Sánchez-Vera; Julio Sevillano; Laura Herrero; Dolors Serra; M. Pilar Ramos; Marta Viana

To test whether enhancing the capability of adipose tissue to store lipids using antioxidant supplementation may prevent the lipotoxic effects and improve the metabolic profile of long‐term obesity.


Progress in Lipid Research | 2016

Carnitine palmitoyltransferase 1C : from cognition to cancer

Núria Casals; Victor A. Zammit; Laura Herrero; Rut Fadó; Rosalia Rodriguez-Rodriguez; Dolors Serra

Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer.

Collaboration


Dive into the Laura Herrero's collaboration.

Top Co-Authors

Avatar

Dolors Serra

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Mera

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan Francesc Mir

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Núria Casals

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Garcia

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge