Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura J. Cobb is active.

Publication


Featured researches published by Laura J. Cobb.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice.

Dervis A. M. Salih; Gyanendra Tripathi; Cathy Holding; Tadge Szestak; M. Ivelisse Gonzalez; Emma J. Carter; Laura J. Cobb; Joan E. Eisemann; Jennifer M. Pell

The insulin-like growth factors (IGFs) are essential for development; bioavailable IGF is tightly regulated by six related IGF-binding proteins (IGFBPs). Igfbp5 is the most conserved and is developmentally up-regulated in key lineages and pathologies; in vitro studies suggest that IGFBP-5 functions independently of IGF interaction. Genetic ablation of individual Igfbps has yielded limited phenotypes because of substantial compensation by remaining family members. Therefore, to reveal Igfbp5 actions in vivo, we generated lines of transgenic mice that ubiquitously overexpressed Igfbp5 from early development. Significantly increased neonatal mortality, reduced female fertility, whole-body growth inhibition, and retarded muscle development were observed in Igfbp5-overexpressing mice. The magnitude of the response in individual transgenic lines was positively correlated with Igfbp5 expression. Circulating IGFBP-5 concentrations increased a maximum of only 4-fold, total and free IGF-I concentrations increased up to 2-fold, and IGFBP-5 was detected in high Mr complexes; however, no detectable decrease in the proportion of free IGF-I was observed. Thus, despite only modest changes in IGF and IGFBP concentrations, the Igfbp5-overexpressing mice displayed a phenotype more extreme than that observed for other Igfbp genetic models. Although growth retardation was obvious prenatally, maximal inhibition occurred postnatally before the onset of growth hormone-dependent growth, regardless of Igfbp5 expression level, revealing a period of sensitivity to IGFBP-5 during this important stage of tissue programming.


PLOS ONE | 2009

Humanin: A Novel Central Regulator of Peripheral Insulin Action

Radhika Muzumdar; Derek M. Huffman; Gil Atzmon; Christoph Buettner; Laura J. Cobb; Sigal Fishman; Temuri Budagov; Lingguang Cui; Francine Einstein; Aruna D. Poduval; David Hwang; Nir Barzilai; Pinchas Cohen

Background Decline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM) and Alzheimers disease (AD). A novel mitochondria-associated peptide, Humanin (HN), has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity. Methods and Findings Using state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice. Conclusions We conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM.


Molecular and Cellular Biology | 2004

Akt2, a Novel Functional Link between p38 Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase Pathways in Myogenesis

Ivelisse Gonzalez; Gyanendra Tripathi; Emma J. Carter; Laura J. Cobb; Dervis A. M. Salih; Fiona A. Lovett; Cathy Holding; Jennifer M. Pell

ABSTRACT Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.


Metabolism-clinical and Experimental | 2010

The neurosurvival factor Humanin inhibits β-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice

Phuong T. Hoang; Patricia Park; Laura J. Cobb; Valdislava Paharkova-Vatchkova; Michael Hakimi; Pinchas Cohen; Kuk-Wha Lee

Pancreatic beta-cell apoptosis is important in the pathogenesis and potential treatment of type 1 diabetes mellitus. We investigated whether Humanin, a recently described survival factor for neurons, could improve the survival of beta-cells and delay or treat diabetes in the nonobese diabetic (NOD) model. Humanin reduced apoptosis induced by serum starvation in NIT-1 cells and decreased apoptosis induced by cytokine treatment. Humanin induced signal transducer and activator of transcription 3 and extracellular signal-regulated kinase phosphorylation over a 24-hour time course. Specific inhibition of signal transducer and activator of transcription 3 resulted in nullifying the protective effect of Humanin. Humanin normalized glucose tolerance in NOD mice treated for 6 weeks, and their pancreata revealed decreased lymphocyte infiltration and severity. In addition, Humanin delayed/prevented the onset of diabetes in NOD mice treated for 20 weeks. In summary, Humanin treatment decreases cytokine-induced apoptosis in beta-cells in vitro and improved glucose tolerance and onset of diabetes in NOD mice in vivo. This indicates that Humanin may be useful for islet protection and survival in a spectrum of diabetes-related therapeutics.


Journal of Cell Science | 2004

Partitioning of IGFBP-5 actions in myogenesis: IGF- independent anti-apoptotic function

Laura J. Cobb; Dervis A. M. Salih; Ivelisse Gonzalez; Gyanendra Tripathi; Emma J. Carter; Fiona A. Lovett; Cathy Holding; Jennifer M. Pell

Igfbp5 is upregulated during the differentiation of several key cell lineages and in some tumours; the function of IGFBP-5 in these physiological and pathological situations is unknown. Since IGFBP-5 contains sequence motifs consistent with IGF-independent actions, the aim of these studies was to distinguish between IGF-dependent and -independent actions of IGFBP-5. Myc-tagged wild-type (termed wtIGFBP-5) and non-IGF binding mouse Igfbp5 (termed mutIGFBP-5) cDNAs were generated and used to transfect C2 myoblasts, a cell line that undergoes differentiation to myotubes in an IGF- and IGFBP-5-regulated manner. WtIGFBP-5, but not mutIGFBP-5, inhibited myogenesis, as assessed by cell morphology, MHC immunocytochemistry and caveolin 3 expression. However, both wt- and mutIGFBP-5 increased cell survival and decreased apoptosis, as indicated by decreased caspase-3 activity and cell surface annexin V binding. Further examination of apoptotic pathways revealed that wt- and mutIGFBP-5 ameliorated the increase in caspase-9 but not the modest increase in caspase-8 during myogenesis, suggesting that IGFBP-5 increased cell survival via inhibition of intrinsic cell death pathways in an IGF-independent manner. The relationship between IGF-II and IGFBP-5 was examined further by cotransfecting C2 myoblasts with antisense Igf2 (previously established to induce increased cell death) and Igfbp5; both wt- and mutIGFBP-5 conferred equivalent protection against the decreased cell survival and increased apoptosis. In conclusion, we have partitioned IGFBP-5 action in myogenesis into IGF-dependent inhibition of differentiation and IGF-independent cell survival. Our findings suggest that, by regulation of cell survival, IGFBP-5 has an autonomous role in the regulation of cell fate in development and in tumourigenesis.


Cardiovascular Research | 2010

Humanin is expressed in human vascular walls and has a cytoprotective effect against oxidized LDL-induced oxidative stress

Adi R. Bachar; Lea Scheffer; Andreas S. Schroeder; Hiromi Nakamura; Laura J. Cobb; Yun K. Oh; Lilach O. Lerman; Richard E. Pagano; Pinchas Cohen; Amir Lerman

AIMS Humanin (HN) is a 24-amino acid peptide that has been shown to have an anti-apoptotic function against neuronal cell death caused by Alzheimers disease. Increased oxidative stress, one of the major factors contributing to this cell death, also plays an important role in the inflammatory process of atherosclerosis. The current study was designed to test the hypothesis that HN is expressed in the human vascular wall and may protect against oxidative stress. METHODS AND RESULTS HN expression in the vascular wall was detected by immunostaining in the endothelial cell layer of human internal mammary arteries (n = 5), atherosclerotic coronary arteries (n = 17), and sections of the greater saphenous vein (n = 3). HN mRNA was expressed in the human aortic endothelial cells (HAECs). Cytoprotective effects of HN against oxidative stress were tested in vitro in HAECs. Pre-treatment with 0.1 µM HN reduced oxidized LDL (Ox-LDL)-induced (i) formation of reactive oxygen species by 50%, (ii) apoptosis by ∼50% as determined by TUNEL staining, and (iii) formation of ceramide, a lipid second messenger involved in the apoptosis signalling cascade, by ∼20%. CONCLUSION The current study demonstrates for the first time the expression of HN in the endothelial cell layer of human blood vessels. Exogenous addition of HN to endothelial cell cultures was shown to be effective against Ox-LDL-induced apoptosis. These findings suggest that HN may play a role and may have a protective effect in early atherosclerosis in humans.


Growth Hormone & Igf Research | 2008

Pomegranate extract induces apoptosis in human prostate cancer cells by modulation of the IGF-IGFBP axis

Satomi Koyama; Laura J. Cobb; Hemal Mehta; Navindra P. Seeram; David Heber; Allan J. Pantuck; Pinchas Cohen

The IGF axis is critical for the regulation of apoptosis in many human cancer cell lines. Recently, potent anti-tumorigenic effects of pomegranate juice and extracts have been reported. Consequently, pomegranate has potential not only as a treatment but also as a preventative measure against certain types of cancer, including prostate. In this study, we investigated the relationship between pomegranate-induced apoptosis in human prostate cancer cells and the IGF/IGFBP system. Treatment of LAPC4 prostate cancer cells with 10microg/ml POMx, a highly potent pomegranate extract prepared from skin and arils minus seeds and standardized to ellagitannin content (37% punicalagins by HPLC), resulted in inhibition of cell proliferation and induction of apoptosis. Interestingly, co-treatment with POMx and IGFBP-3 revealed synergistic stimulation of apoptosis and additive inhibition of cell growth. Western blot analysis revealed that treatment with POMx or POMx/IGFBP-3 combination resulted in increased JNK phosphorylation, and decreased Akt and mTOR activation, consistent with a growth inhibitory, pro-apoptotic function. We also investigated the relationship between IGF-1 and pomegranate-induced apoptosis in 22RV1 prostate cancer cells. Co-treatment with 100ng/ml IGF-1 completely blocked apoptosis induction by POMx. In contrast, IGF-I failed to inhibit POMx-induced apoptosis in R(-) cells, suggesting the importance of IGF-IR. POMx-treatment decreased Igf1 mRNA expression in a dose-dependent manner indicating that its actions also involve tumor-specific suppression of IGF-1. These studies revealed novel interactions between the IGF system and pomegranate-induced apoptosis.


Cancer Research | 2011

IGFBP-3 is a Metastasis Suppression Gene in Prostate Cancer

Hemal Mehta; Qinglei Gao; Colette Galet; Vladislava Paharkova; Junxiang Wan; Jonathan W. Said; Joanne J. Sohn; Gregory W. Lawson; Pinchas Cohen; Laura J. Cobb; Kuk-Wha Lee

The insulin-like growth factor binding protein IGFBP-3 is a proapoptotic and antiangiogenic protein in prostate cancer (CaP). Epidemiologic studies suggest that low IGFBP-3 is associated with greater risk of aggressive, metastatic prostate cancers, but in vivo functional data are lacking. Here we show that mice that are genetically deficient in IGFBP-3 exhibit weaker growth of primary prostate tumors but higher incidence of metastatic disease. Prostates in IGFBP-3 knockout mice (IGFBP-3KO mice) failed to undergo apoptosis after castration. Spontaneous prostate tumors did not develop in IGFBP-3KO mice, but splenic lymphomas occurred in 23% of female IGFBP-3KO mice by 80 weeks of age. To assess the effects of IGFBP-3 deficiency on prostate cancer development, we crossed IGFBP-3KO mice with a c-Myc-driven model of CaP that develops slow-growing, nonmetastatic tumors. By 24 weeks of age, well-differentiated prostate cancers were observed in all mice regardless of IGFBP-3 status. However, by 80 weeks of age IGFBP-3KO mice tended to exhibit larger prostate tumors than control mice. More strikingly, lung metastases were observed at this time in 55% of the IGFBP-3KO mice but none in the control animals. Cell lines established from IGFBP-3KO:Myc tumors displayed more aggressive phenotypes in proliferation, invasion, and colony formation assays, relative to control Myc tumor cell lines. In addition, Myc:IGFBP-3KO cells exhibited evidence of epithelial-mesenchymal transition. Our findings established a function for IGFBP-3 in suppressing metastasis in prostate cancer, and they also offered the first reported transgenic model of spontaneous metastatic prostate cancer for studies of this advanced stage of disease.


Cancer Research | 2008

Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression.

Makoto Anzo; Laura J. Cobb; David Hwang; Hemal Mehta; Jonathan W. Said; Shoshana Yakar; Derek LeRoith; Pinchas Cohen

The role of systemic and local insulin-like growth factor I (IGF-I) in the development of prostate cancer is still controversial. Transgenic adenocarcinoma mouse prostate (TRAMP) mice express the SV40 T-antigen under the control of the probasin promoter, and spontaneously develop prostate cancer. We crossed TRAMP mice with liver IGF-deficient (LID) mice to produce LID-TRAMP mice, a mouse model of prostate cancer with low serum IGF-I, to allow us to study the effect of circulatory IGF-I levels on the development of prostate cancer. LID mice have a targeted deletion of the hepatic Igf1 gene but retain normal expression of Igf1 in extrahepatic tissues. Serum IGF-I and IGFBP-3 levels in LID and LID-TRAMP mice were measured using novel assays, which showed that they are approximately 10% and 60% of control L/L- mice, respectively. Serum growth hormone (GH) levels of LID-TRAMP mice were 3.5-fold elevated relative to L/L-TRAMP mice (P < 0.001), but IGFBP-2 levels were not different. Surprisingly, rates of survival, metastasis, and the ratio of genitourinary tissue weight to body weight were not significantly different between LID-TRAMP and L/L-TRAMP mice. There was also no difference in the pathologic stage of the prostate cancer between the two groups at 9 to 19 weeks of age. LID-TRAMP tumors displayed increased levels of GH receptors and increased Akt phosphorylation. These results are in striking contrast with the published model of the GH-deficient lit/lit-TRAMP, which has smaller tumors and improved survival, and indicate that the reduction in systemic IGF-I is not sufficient to inhibit prostate cancer tumor progression in the TRAMP model, which may require a reduction of GH levels as well.


The FASEB Journal | 2009

IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo

Gyanendra Tripathi; Dervis A. M. Salih; Anja C. Drozd; Ruth A. Cosgrove; Laura J. Cobb; Jennifer M. Pell

IGF activity is regulated tightly by a family of IGF binding proteins (IGFBPs). IGFBP‐5 is the most conserved of these and is up‐regulated significantly during differentiation of several key lineages and in some cancers. The function of IGFBP‐5 in these physiological and pathological situations is unclear, however, several IGFBP‐5 sequence motifs and studies in vitro suggest IGF‐independent actions. Therefore, we aimed to compare the phenotypes of mice overexpressing wild‐type Igfbp5 or an N‐terminal mutant Igfbp5 with negligible IGF binding affinity. Both significantly inhibited growth, even at low expression levels. Even though wild‐type IGFBP‐5 severely disrupted the IGF axis, we found no evidence for interaction of mutant IGFBP‐5 with the IGF system. Further, overexpression of wildtype IGFBP‐5 rescued the lethal phenotype induced by “excess” IGF‐II in type 2 receptor‐null mice;mutant IGFBP‐5 overexpression could not. Therefore, wildtype IGFBP‐5 provides a very effective mechanism for the inhibition of IGF activity and a powerful in vivo mechanism to inhibit IGF activity in pathologies such as cancer. This study is also the first to suggest significant IGF‐independent actions for IGFBP‐5 during development.— Tripathi, G., Salih, D. A. M., Drozd, A. C., Cosgrove, R. A., Cobb, L. J., Pell, J. M. IGF‐independent effects of insulin‐like growth factor binding protein‐5 (Igfbp5) in vivo. FASEBJ. 23, 2616–2626 (2009)

Collaboration


Dive into the Laura J. Cobb's collaboration.

Top Co-Authors

Avatar

Pinchas Cohen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hemal Mehta

University of California

View shared research outputs
Top Co-Authors

Avatar

Kuk-Wha Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bingrong Liu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge