Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura J. Kaufman is active.

Publication


Featured researches published by Laura J. Kaufman.


Nature | 2009

Near-field focusing and magnification through self-assembled nanoscale spherical lenses

Ju Young Lee; Byung Hee Hong; Woo Youn Kim; Seung Kyu Min; Yukyung Kim; Mikhail V. Jouravlev; Ranojoy Bose; Keun Soo Kim; In-Chul Hwang; Laura J. Kaufman; Chee Wei Wong; Philip Kim; Kwang S. Kim

It is well known that a lens-based far-field optical microscope cannot resolve two objects beyond Abbe’s diffraction limit. Recently, it has been demonstrated that this limit can be overcome by lensing effects driven by surface-plasmon excitation, and by fluorescence microscopy driven by molecular excitation. However, the resolution obtained using geometrical lens-based optics without such excitation schemes remains limited by Abbe’s law even when using the immersion technique, which enhances the resolution by increasing the refractive indices of immersion liquids. As for submicrometre-scale or nanoscale objects, standard geometrical optics fails for visible light because the interactions of such objects with light waves are described inevitably by near-field optics. Here we report near-field high resolution by nanoscale spherical lenses that are self-assembled by bottom-up integration of organic molecules. These nanolenses, in contrast to geometrical optics lenses, exhibit curvilinear trajectories of light, resulting in remarkably short near-field focal lengths. This in turn results in near-field magnification that is able to resolve features beyond the diffraction limit. Such spherical nanolenses provide new pathways for lens-based near-field focusing and high-resolution optical imaging at very low intensities, which are useful for bio-imaging, near-field lithography, optical memory storage, light harvesting, spectral signal enhancing, and optical nano-sensing.


Biophysical Journal | 2009

Elastic Moduli of Collagen Gels Can Be Predicted from Two-Dimensional Confocal Microscopy

Ya-li Yang; Lindsay M. Leone; Laura J. Kaufman

We quantitatively compare data obtained from imaging two-dimensional slices of three-dimensional unlabeled and fluorescently labeled collagen gels with confocal reflectance microscopy (CRM) and/or confocal fluorescence microscopy (CFM). Different network structures are obtained by assembling the gels over a range of concentrations at various temperatures. Comparison between CRM and CFM shows that the techniques are not equally sensitive to details of network structure, with CFM displaying higher fidelity in imaging fibers parallel to the optical axis. Comparison of CRM of plain and labeled collagen gels shows that labeling itself induces changes in gel structure, chiefly through inhibition of fibril bundling. Despite these differences, image analyses carried out on two-dimensional CFM and CRM slices of collagen gels reveal identical trends in structural parameters as a function of collagen concentration and gelation temperature. Fibril diameter approximated from either CRM or CFM is in good accord with that determined via electron microscopy. Two-dimensional CRM images are used to show that semiflexible polymer theory can relate network structural properties to elastic modulus successfully. For networks containing bundled fibrils, it is shown that average structural diameter, rather than fibril diameter, is the length scale that sets the magnitude of the gel elastic modulus.


Biophysical Journal | 2009

Rheology and Confocal Reflectance Microscopy as Probes of Mechanical Properties and Structure during Collagen and Collagen/Hyaluronan Self-Assembly

Ya-li Yang; Laura J. Kaufman

In this work, the gelation of three-dimensional collagen and collagen/hyaluronan (HA) composites is studied by time sweep rheology and time lapse confocal reflectance microscopy (CRM). To investigate the complementary nature of these techniques, first collagen gel formation is investigated at concentrations of 0.5, 1.0, and 1.5 mg/mL at 37 degrees C and 32 degrees C. The following parameters are used to describe the self-assembly process in all gels: the crossover time (t(c)), the slope of the growth phase (k(g)), and the arrest time (t(a)). The first two measures are determined by rheology, and the third by CRM. A frequency-independent rheological measure of gelation, t(g), is also measured at 37 degrees C. However, this quantity cannot be straightforwardly determined for gels formed at 32 degrees C, indicating that percolation theory does not fully capture the dynamics of collagen network formation. The effects of collagen concentration and gelation temperature on k(g), t(c), and t(a) as well as on the mechanical properties and structure of these gels both during gelation and at equilibrium are elucidated. Composite collagen/HA gels are also prepared, and their properties are monitored at equilibrium and during gelation at 37 degrees C and 32 degrees C. We show that addition of HA subtly alters mechanical properties and structure of these systems both during the gelation process and at equilibrium. This occurs in a temperature-dependent manner, with the ratio of HA deposited on collagen fibers versus that distributed homogeneously between fibers increasing with decreasing gelation temperature. In addition to providing information on collagen and collagen/HA structure and mechanical properties during gelation, this work shows new ways in which rheology and microscopy can be used complementarily to reveal details of gelation processes.


Biomaterials | 2010

Pore size variable type I collagen gels and their interaction with glioma cells

Ya-li Yang; Stéphanie Motte; Laura J. Kaufman

Gelation temperatures from 22 degrees C to 37 degrees C were used to control the pore size of collagen matrices independent of collagen concentration. To limit cell exposure to temperatures lower than physiological temperature, the putative nucleation and growth mechanism of collagen was investigated to determine the time at which gel fibril and network structure becomes independent of temperature. It was found that the temperature dependent portion of collagen gelation ends close to the time at which fibrils first form a network spanning structure. These findings were then exploited to prepare cell-embedded gels nucleated at 22, 27, or 32 degrees C and then incubated at 37 degrees C. This achieves fibrillar and network structure characteristic of gels formed solely at the nucleation temperature. Proof of principle studies of glioma invasion in these gels suggested pore size is a key determinant of glioma invasive speed in collagen gels.


Physical Review Letters | 2005

Glasslike arrest in spinodal decomposition as a route to colloidal gelation

Suliana Manley; Hans M. Wyss; Kunimasa Miyazaki; Jacinta C. Conrad; V. Trappe; Laura J. Kaufman; David R. Reichman; David A. Weitz

Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich and colloid-poor regions. Gelation results when interconnected colloid-rich regions solidify. We show that this occurs when these regions undergo a glass transition, leading to dynamic arrest of the spinodal decomposition. The characteristic length scale of the gel decreases with increasing quench depth, and the nonergodicity parameter exhibits a pronounced dependence on scattering vector. Mode coupling theory gives a good description of the dynamics, provided we use the full static structure as input.


Biopolymers | 2013

Strain stiffening in collagen I networks

Stéphanie Motte; Laura J. Kaufman

Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhibit strain stiffening; in general, onset of strain stiffening occurs earlier, yield strain is lower, and degree of strain stiffening is smaller in higher concentration gels and in those displaying thick fibril bundles. Recovery after exposure to high strains is substantial and similar in all gels, suggesting that much of the stiffening comes from reversible network deformations. A key finding of this study is that collagen I gels of identical storage and loss moduli may display different nonlinear responses and different capacities to recover from high strain.


Biophysical Journal | 2008

The Role of Extracellular Matrix in Glioma Invasion: A Cellular Potts Model Approach☆

Brenda M. Rubenstein; Laura J. Kaufman

In this work, a cellular Potts model based on the differential adhesion hypothesis is employed to analyze the relative importance of select cell-cell and cell-extracellular matrix (ECM) contacts in glioma invasion. To perform these simulations, three types of cells and two ECM components are included. The inclusion of explicit ECM with an inhomogeneous fibrous component and a homogeneously dispersed afibrous component allows exploration of the importance of relative energies of cell-cell and cell-ECM contacts in a variety of environments relevant to in vitro and in vivo experimental investigations of glioma invasion. Simulations performed here focus chiefly on reproducing findings of in vitro experiments on glioma spheroids embedded in collagen I gels. For a given range and set ordering of energies associated with key cell-cell and cell-ECM interactions, our model qualitatively reproduces the dispersed glioma invasion patterns found for most glioma cell lines embedded as spheroids in collagen I gels of moderate concentration. In our model, we find that invasion is maximized at intermediate collagen concentrations, as occurs experimentally. This effect is seen more strongly in model gels composed of short collagen fibers than in those composed of long fibers, which retain significant connectivity even at low density. Additional simulations in aligned model matrices further elucidate how matrix structure dictates invasive patterns. Finally, simulations that allow invading cells to both dissolve and deposit ECM components demonstrate how Q-Potts models may be elaborated to allow active cell alteration of their surroundings. The model employed here provides a quantitative framework with which to bound the relative values of cell-cell and cell-ECM interactions and investigate how varying the magnitude and type of these interactions, as well as ECM structure, could potentially curtail glioma invasion.


Biomaterials | 2014

The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments.

Asja Guzman; Michelle J. Ziperstein; Laura J. Kaufman

Local invasion by and dissemination of cancer cells from a primary tumor are key initial steps of metastasis, the most lethal aspect of cancer. To study these processes in vitro, the invasion of cells from multicellular breast cancer aggregates embedded in three-dimensional (3D) extracellular matrix culture systems was studied. This work showed that in 3D fibrillar environments composed of collagen I, pore size--not the viscoelastic properties of the matrix--was the biophysical characteristic controlling breast cancer cell invasion efficiency. Furthermore, it was shown that fibrillar matrix architecture is a crucial factor that allows for efficient 3D invasion. In a 3D non-fibrillar environment composed of basement membrane extract (BME), invasion efficiency was greatly diminished, the mesenchymal individual mode of 3D invasion was abolished, and establishment of cell polarity and protrusions was compromised. These effects were seen even though the BME matrix has invasion permissive viscoelasticity and suitable adhesion ligands. The altered and limited invasive behavior observed in BME was rescued through introduction of fibrillar collagen into the non-fibrillar matrix. The biophysical cues of fibrillar collagen facilitated efficient invasion of sterically disadvantageous environments through assisting cell polarization and formation of stable cell protrusions. Finally, we suggest the composite matrices employed in this study consisting of fibrillar collagen I and BME in either a liquid-like or gelled state are suitable for a wide range of 3D cell studies, as these matrices combine fibrillar features that require cells to deploy integrin-dependent mechanotransduction machinery and a tunable non-fibrillar component that may require cells to adopt alternative migratory modes.


Journal of Rheology | 2010

Arrested fluid-fluid phase separation in depletion systems: Implications of the characteristic length on gel formation and rheology

Jacinta C. Conrad; Hans M. Wyss; V. Trappe; Suliana Manley; Kunimasa Miyazaki; Laura J. Kaufman; Andrew B. Schofield; David R. Reichman; David A. Weitz

We investigate the structural, dynamical, and rheological properties of colloid-polymer mixtures in a volume fraction range of ϕ=0.15–0.35. Our systems are density-matched, residual charges are screened, and the polymer-colloid size ratio is ∼0.37. For these systems, the transition to kinetically arrested states, including disconnected clusters and gels, coincides with the fluid-fluid phase separation boundary. Structural investigations reveal that the characteristic length, L, of the networks is a strong function of the quench depth: for shallow quenches, L is significantly larger than that obtained for deep quenches. By contrast, L is for a given quench depth almost independent of ϕ; this indicates that the strand thickness increases with ϕ. The strand thickness determines the linear rheology: the final relaxation time exhibits a strong dependence on ϕ, whereas the high frequency modulus does not. We present a simple model based on estimates of the strand breaking time and shear modulus that semiquantit...


Journal of Chemical Physics | 2006

Direct imaging of repulsive and attractive colloidal glasses

Laura J. Kaufman; David A. Weitz

Coherent anti-Stokes Raman scattering microscopy is performed on glassy systems of poly(methylmethacrylate) colloidal particles in density- and refractive-index-matched solvents. Samples are prepared with varying amounts of linear polystyrene, which induces a depletion driven attraction between the nearly hard-sphere particles. Images collected over several hours confirm the existence of a reentrant glass transition. The images also reveal that the dynamics of repulsive and attractive glasses are qualitatively different. Colloidal particles in repulsive glasses exhibit cage rattling and escape, while those in attractive glasses are nearly static while caged but exhibit large displacements upon (infrequent) cage escape.

Collaboration


Dive into the Laura J. Kaufman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suliana Manley

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Hans M. Wyss

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge