Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura J. Martins is active.

Publication


Featured researches published by Laura J. Martins.


Journal of Biological Chemistry | 1998

Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae

Laura J. Martins; Laran T. Jensen; John R. Simons; Greg Keller; Dennis R. Winge

The high affinity uptake systems for iron and copper ions in Saccharomyces cerevisiae involve metal-specific permeases and two known cell surface Cu(II) and Fe(III) metalloreductases, Fre1 and Fre2. Five novel genes found in theS. cerevisiae genome exhibit marked sequence similarity to Fre1 and Fre2, suggesting that the homologs are part of a family of proteins related to Fre1 and Fre2. The homologs are expressed genes inS. cerevisiae, and their expression is metalloregulated as is true with FRE1 and FRE2. Four of the homologs (FRE3-FRE6) are specifically iron-regulated through the Aft1 transcription factor. These genes are expressed either in cells limited for iron ion uptake by treatment with a chelator or in cells lacking the high affinity iron uptake system. Expression of FRE3-FRE6 is elevated inAFT1–1 cells and attenuated in aft1null cells, showing that iron modulation occurs through the Aft1 transcriptional activator. The fifth homolog FRE7 is specifically copper-metalloregulated. FRE7 is expressed in cells limited in copper ion uptake by a Cu(I)-specific chelator or in cells lacking the high affinity Cu(I) permeases. The constitutive expression of FRE7 inMAC1 cells and the lack of expression in mac1–1 cells are consistent with Mac1 being the critical transcriptional activator of FRE7 expression. The 5′ promoter sequence of FRE7 contains three copper-responsive promoter elements. Two elements are critical for Mac1-dependent FRE7 expression. Combinations of either the distal and central elements or the central and proximal elements result in copper-regulated FRE7 expression. Spacing between Mac1-responsive sites is important as shown by the attenuated expression of FRE7 and CTR1 when two elements are separated by over 100 base pairs. From the three Mac1-responsive elements in FRE7, a new consensus sequence for Mac1 binding can be established as TTTGC(T/G)C(A/G).


Cell Cycle | 2013

BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism

Daniela Boehm; Vincenzo Calvanese; Roy D. Dar; Sifei Xing; Sebastian Schroeder; Laura J. Martins; Katherine Aull; Pao Chen Li; Vicente Planelles; James E. Bradner; Ming-Ming Zhou; Robert F. Siliciano; Leor S. Weinberger; Eric Verdin; Melanie Ott

The therapeutic potential of pharmacologic inhibition of bromodomain and extraterminal (BET) proteins has recently emerged in hematological malignancies and chronic inflammation. We find that BET inhibitor compounds (JQ1, I-Bet, I-Bet151 and MS417) reactivate HIV from latency. This is evident in polyclonal Jurkat cell populations containing latent infectious HIV, as well as in a primary T-cell model of HIV latency. Importantly, we show that this activation is dependent on the positive transcription elongation factor p-TEFb but independent from the viral Tat protein, arguing against the possibility that removal of the BET protein BRD4, which functions as a cellular competitor for Tat, serves as a primary mechanism for BET inhibitor action. Instead, we find that the related BET protein, BRD2, enforces HIV latency in the absence of Tat, pointing to a new target for BET inhibitor treatment in HIV infection. In shRNA-mediated knockdown experiments, knockdown of BRD2 activates HIV transcription to the same extent as JQ1 treatment, while a lesser effect is observed with BRD4. In single-cell time-lapse fluorescence microscopy, quantitative analyses across ~2,000 viral integration sites confirm the Tat-independent effect of JQ1 and point to positive effects of JQ1 on transcription elongation, while delaying re-initiation of the polymerase complex at the viral promoter. Collectively, our results identify BRD2 as a new Tat-independent suppressor of HIV transcription in latently infected cells and underscore the therapeutic potential of BET inhibitors in the reversal of HIV latency.


Antimicrobial Agents and Chemotherapy | 2015

Ex Vivo Bioactivity and HIV-1 Latency Reversal by Ingenol Dibenzoate and Panobinostat in Resting CD4+ T Cells from Aviremic Patients

Adam M. Spivak; Alberto Bosque; Alfred H. Balch; David Smyth; Laura J. Martins; Vicente Planelles

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) latent reservoir in resting CD4+ T cells represents a major barrier to viral eradication. Small compounds capable of latency reversal have not demonstrated uniform responses across in vitro HIV-1 latency cell models. Characterizing compounds that demonstrate latency-reversing activity in resting CD4+ T cells from aviremic patients ex vivo will help inform pilot clinical trials aimed at HIV-1 eradication. We have optimized a rapid ex vivo assay using resting CD4+ T cells from aviremic HIV-1+ patients to evaluate both the bioactivity and latency-reversing potential of candidate latency-reversing agents (LRAs). Using this assay, we characterize the properties of two candidate compounds from promising LRA classes, ingenol 3,20-dibenzoate (a protein kinase C agonist) and panobinostat (a histone deacetylase inhibitor), in cells from HIV-1+ antiretroviral therapy (ART)-treated aviremic participants, including the effects on cellular activation and cytotoxicity. Ingenol induced viral release at levels similar to those of the positive control (CD3/28 receptor stimulation) in cells from a majority of participants and represents an exciting LRA candidate, as it combines a robust viral reactivation potential with a low toxicity profile. At concentrations that blocked histone deacetylation, panobinostat displayed a wide range of potency among participant samples and consistently induced significant levels of apoptosis. The protein kinase C agonist ingenol 3,20-dibenzoate demonstrated significant promise in a rapid ex vivo assay using resting CD4+ T cells from treated HIV-1-positive patients to measure latent HIV-1 reactivation.


Chemistry & Biology | 1994

Magnetic circular dichroism studies of exogenous ligand and substrate binding to the non-heme ferrous active site in phthalate dioxygenase

Elizabeth G. Pavel; Laura J. Martins; Walther R. Ellis; Edward I. Solomon

BACKGROUND Mononuclear non-heme iron centers are found in the active sites of a variety of enzymes that require molecular oxygen for catalysis. The mononuclear non-heme iron is believed to be the active site for catalysis, and is presumed to bind and activate molecular oxygen. The mechanism of this reaction is not understood. Phthalate dioxygenase is one such enzyme. Because it also contains a second iron site, the Rieske site, it is difficult to obtain information on the structure of the active site. We therefore used magnetic circular dichroism (MCD) spectroscopy to probe the mononuclear, non-heme Fe2+ site in this biodegradative enzyme. RESULTS The MCD spectrum of the resting enzyme shows features indicative of one six-coordinate Fe2+ site; substrate binding converts the site to two different five-coordinate species, opening up a coordination position for O2 binding. MCD spectra of the corresponding apoenzyme have been subtracted to account for temperature-independent contributions from the Rieske site. Azide binds both to the resting enzyme to produce a new six-coordinate species, showing that one of the ferrous ligands is exchangeable, and also to the enzyme-substrate complex to form a ternary species. The low azide binding constant for the substrate-enzyme species relative to the resting enzyme indicates steric interaction and close proximity between exogenous ligand and the substrate. CONCLUSIONS We have been able to provide some detailed structural insight into exogenous ligand and substrate binding to the non-heme Fe2+ site, even in the presence of the enzymes [2Fe-2S] Rieske center. Further mechanistic studies are now required to maximize the molecular-level detail available from these spectroscopic studies.


Journal of Biological Inorganic Chemistry | 1997

Sensors that mediate copper-specific activation and repression of gene expression

Dennis R. Winge; Janet A. Graden; Matthew C. Posewitz; Laura J. Martins; Laran T. Jensen; John R. Simon

Abstract Copper ion homeostasis in yeast is maintained, in part, through regulated expression of genes involved in copper ion uptake, Cu(I) sequestration and defense against reactive oxygen intermediates. Positive and negative copper ion regulation is observed, and both effects occur at the level of transcription. The mechanism of Cu(I) regulation is distinct for transcriptional activation versus transcriptional inhibition. Cu(I) activation of gene expression occurs through Cu-induced DNA binding by the transcription factors Ace1 in Saccharomyces cerevisiae and Amt1 in Candida glabrata. Cu(I) ion binding within a regulatory domain of each molecule stabilizes a specific tertiary fold capable of high affinity interaction with specific DNA promoter sequences. Cu(I)-activated transcription factors are modular proteins in which the DNA binding domain is distinct from the domain that mediates transcriptional activation through assembly of the preinitiation complex. Cu(I) triggering involves formation of a tetracopper thiolate cluster within a regulatory domain. Formation of the tetracopper cluster occurs in an all-or-nothing fashion. Thus, the concentration of Cu-activated factor is proportional to the Cu(I) concentration, thereby directly coupling the intracellular Cu(I) concentration to transcriptional activation of a subset of genes. Cu-mediated inhibition of gene expression in S. cerevisiae occurs through copper regulation of the Mac1 transcription factor. Genes inhibited in their expression in Cu-treated cells encode proteins involved in Cu ion uptake across the plasma membrane. The activation domain of Mac1 is repressed in Cu-treated cells. The presence of duplicated cysteine-rich sequences within the activation domain is consistent with Cu(I) binding within this domain.


Cell Host & Microbe | 2015

BIRC2/cIAP1 Is a Negative Regulator of HIV-1 Transcription and Can Be Targeted by Smac Mimetics to Promote Reversal of Viral Latency

Lars Pache; Miriam S. Dutra; Adam M. Spivak; John Marlett; Jeffrey P. Murry; Young Hwang; Ana M. Maestre; Lara Manganaro; Mitchell Vamos; Peter Teriete; Laura J. Martins; Renate König; Viviana Simon; Alberto Bosque; Ana Fernandez-Sesma; Nicholas Dp Cosford; Frederic D. Bushman; John A. T. Young; Vicente Planelles; Sumit K. Chanda

Combination antiretroviral therapy (ART) is able to suppress HIV-1 replication to undetectable levels. However, the persistence of latent viral reservoirs allows for a rebound of viral load upon cessation of therapy. Thus, therapeutic strategies to eradicate the viral latent reservoir are critically needed. Employing a targeted RNAi screen, we identified the ubiquitin ligase BIRC2 (cIAP1), a repressor of the noncanonical NF-κB pathway, as a potent negative regulator of LTR-dependent HIV-1 transcription. Depletion of BIRC2 through treatment with small molecule antagonists known as Smac mimetics enhanced HIV-1 transcription, leading to a reversal of latency in a JLat latency model system. Critically, treatment of resting CD4+ T cells isolated from ART-suppressed patients with the histone deacetylase inhibitor (HDACi) panobinostat together with Smac mimetics resulted in synergistic activation of the latent reservoir. These data implicate Smac mimetics as useful agents for shock-and-kill strategies to eliminate the latent HIV reservoir.


Biochemistry | 1997

Functional Role of Leucine-103 in Myohemerythrin†

Gregory M. Raner; Laura J. Martins; Walther R. Ellis

Hemerythrins (Hrs) and myohemerythrins (Mhrs) are nonheme iron proteins that function as O2 carriers in four marine invertebrate phyla. Available amino acid sequences and X-ray structures indicate that a conserved leucine, residue 103 in the Themiste zostericola Mhr sequence, occupies a site distal to the Fe-O-Fe center. The side-chain methyl groups of the analogous leucine in Themiste dyscrita oxyHr are in van der Waals contact with bound O2 in the X-ray crystal structure, and this residue may therefore play a role in stabilizing bound dioxygen with respect to autoxidation. In order to test this hypothesis, the gene for T. zostericola Mhr was synthesized and expressed in Escherichia coli. Two mutant Mhrs, L103V and L103N, were also prepared. Optical spectra and kinetics data for these three proteins are presented. Importantly, neither mutant forms a stable oxy adduct; instead, rapid autoxidation results in formation of the corresponding met forms. In addition, the L103N Mhr displays unusually rapid reduction kinetics, suggesting that the amide functionality of Asn-103 destabilizes most bound ligands and additionally promotes rapid semi-metR <==> semi-metO isomerization.


Cell Reports | 2017

Benzotriazoles Reactivate Latent HIV-1 through Inactivation of STAT5 SUMOylation

Alberto Bosque; Kyle A. Nilson; Amanda B. Macedo; Adam M. Spivak; Nancie M. Archin; Ryan M. Van Wagoner; Laura J. Martins; Camille L. Novis; Matthew A. Szaniawski; Chris M. Ireland; David M. Margolis; David H. Price; Vicente Planelles

SUMMARY The presence of latent HIV-1 in infected individuals represents a major barrier preventingviral eradication. For that reason, reactivation of latent viruses in the presence of antiretroviral regimens has been proposed as a therapeutic strategy to achieve remission. We screened for small molecules and identified several benzotriazole derivatives with the ability to reactivate latent HIV-1. In the presence of IL-2, benzotriazoles reactivated and reduced the latent reservoir in primary cells, and, remarkably, viral reactivation was achieved without inducing cell proliferation, T cell activation, or cytokine release. Mechanistic studies showed that benzotriazoles block SUMOylation of phosphorylated STAT5, increasing STAT5’s activity and occupancy of the HIV-1 LTR. Our results identify benzotriazoles as latency reversing agents and STAT5 signaling and SUMOylation as targets for HIV-1 eradication strategies. These compounds represent a different direction in the search for “shock and kill” therapies.


Retrovirology | 2016

Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo

Adam M. Spivak; Erin T. Larragoite; McKenna K L Coletti; Amanda B. Macedo; Laura J. Martins; Alberto Bosque; Vicente Planelles

BackgroundDespite the durable viral suppression afforded by antiretroviral therapy, HIV-1 eradication will require strategies to target latently infected cells that persist in infected individuals. Protein kinase C (PKC) activation is a promising strategy to reactivate latent proviruses and allow for subsequent recognition and clearance of infected cells by the immune system. Ingenol derivatives are PKC agonists that induce latency reversal but also lead to T cell activation and the release of pro-inflammatory cytokines, which would be undesirable in vivo. In this work, we sought to identify compounds that would suppress pro-inflammatory cytokine production in the context of PKC activation.Design and methodsWe performed an in vitro screen to identify compounds that could dampen pro-inflammatory cytokine release associated with T cell activation, using IL-6 as a model cytokine. We then tested the ability of the most promising screening hit, the FDA-approved Janus Kinase (JAK) inhibitor ruxolitinib, to diminish release of multiple cytokines and its effect on latency reversal using cells from HIV-1-positive, aviremic participants.ResultsWe demonstrate that co-administration of ruxolitinib with ingenol-3,20-dibenzoate significantly reduces pro-inflammatory cytokine release without impairing latency reversal ex vivo.ConclusionThe combination of ingenol compounds and JAK inhibition represents a novel strategy for HIV-1 eradication.


PLOS Pathogens | 2016

Transcriptomic Analysis Implicates the p53 Signaling Pathway in the Establishment of HIV-1 Latency in Central Memory CD4 T Cells in an In Vitro Model

Cory H. White; Bastiaan Moesker; Nadejda Beliakova-Bethell; Laura J. Martins; Celsa A. Spina; David M. Margolis; Douglas D. Richman; Vicente Planelles; Alberto Bosque; Christopher H. Woelk

The search for an HIV-1 cure has been greatly hindered by the presence of a viral reservoir that persists despite antiretroviral therapy (ART). Studies of HIV-1 latency in vivo are also complicated by the low proportion of latently infected cells in HIV-1 infected individuals. A number of models of HIV-1 latency have been developed to examine the signaling pathways and viral determinants of latency and reactivation. A primary cell model of HIV-1 latency, which incorporates the generation of primary central memory CD4 T cells (TCM), full-length virus infection (HIVNL4-3) and ART to suppress virus replication, was used to investigate the establishment of HIV latency using RNA-Seq. Initially, an investigation of host and viral gene expression in the resting and activated states of this model indicated that the resting condition was reflective of a latent state. Then, a comparison of the host transcriptome between the uninfected and latently infected conditions of this model identified 826 differentially expressed genes, many of which were related to p53 signaling. Inhibition of the transcriptional activity of p53 by pifithrin-α during HIV-1 infection reduced the ability of HIV-1 to be reactivated from its latent state by an unknown mechanism. In conclusion, this model may be used to screen latency reversing agents utilized in shock and kill approaches to cure HIV, to search for cellular markers of latency, and to understand the mechanisms by which HIV-1 establishes latency.

Collaboration


Dive into the Laura J. Martins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge