Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura J. Norton is active.

Publication


Featured researches published by Laura J. Norton.


Science | 2016

Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin

Takeshi Masuda; Xin Wang; Manami Maeda; Matthew C. Canver; Falak Sher; Alister P. W. Funnell; Chris Fisher; Maria Suciu; Gabriella E. Martyn; Laura J. Norton; Catherine Zhu; Ryo Kurita; Yukio Nakamura; Jian Xu; Douglas R. Higgs; Merlin Crossley; Daniel E. Bauer; Stuart H. Orkin; Peter V. Kharchenko; Takahiro Maeda

Reactivating the fetal globin gene Mutation of adult-type globin genes causes sickle cell disease and thalassemia. Although treating these hemoglobinopathies with gene therapy is possible, there is a pressing need for pharmacologic approaches to treat general patient populations. One promising approach is to reactivate repressed expression of fetal-type hemoglobin (HbF) in adult erythroid cells. Masuda et al. reveal a molecular mechanism governing HbF repression as mediated by the LRF/ZBTB7A transcription factor. The study may encourage the development of new HbF reactivation therapies for hemoglobinopathies. Science, this issue p. 285 Reactivation of fetal globin gene expression may enable treatment of hemoglobinopathies. Genes encoding human β-type globin undergo a developmental switch from embryonic to fetal to adult-type expression. Mutations in the adult form cause inherited hemoglobinopathies or globin disorders, including sickle cell disease and thalassemia. Some experimental results have suggested that these diseases could be treated by induction of fetal-type hemoglobin (HbF). However, the mechanisms that repress HbF in adults remain unclear. We found that the LRF/ZBTB7A transcription factor occupies fetal γ-globin genes and maintains the nucleosome density necessary for γ-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A. Our study may provide additional opportunities for therapeutic targeting in the treatment of hemoglobinopathies.


Nature Communications | 2015

Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin

Beeke Wienert; Alister P. W. Funnell; Laura J. Norton; Richard C. M. Pearson; Lorna Wilkinson-White; Krystal Lester; Jim Vadolas; Matthew H. Porteus; Jacqueline M. Matthews; Kate G. R. Quinlan; Merlin Crossley

Genetic disorders resulting from defects in the adult globin genes are among the most common inherited diseases. Symptoms worsen from birth as fetal γ-globin expression is silenced. Genome editing could permit the introduction of beneficial single-nucleotide variants to ameliorate symptoms. Here, as proof of concept, we introduce the naturally occurring Hereditary Persistance of Fetal Haemoglobin (HPFH) -175T>C point mutation associated with elevated fetal γ-globin into erythroid cell lines. We show that this mutation increases fetal globin expression through de novo recruitment of the activator TAL1 to promote chromatin looping of distal enhancers to the modified γ-globin promoter.


Journal of Immunology | 2011

Impaired B cell development in the absence of Krüppel-like factor 3

Thi Thanh Vu; Dominique Gatto; Vivian M. Turner; Alister P. W. Funnell; Ka Sin Mak; Laura J. Norton; Warren Kaplan; Mark J. Cowley; Fabien Agenès; Jörg Kirberg; Robert Brink; Richard C. M. Pearson; Merlin Crossley

Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klfs are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells.


Molecular and Cellular Biology | 2012

The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo.

Alister P. W. Funnell; Laura J. Norton; Ka Sin Mak; Jon Burdach; Crisbel M. Artuz; Natalie A. Twine; Marc R. Wilkins; Carl A. Power; Tzong-Tyng Hung; José Perdomo; Philip Koh; Kim S. Bell-Anderson; Stuart H. Orkin; Stuart T. Fraser; Andrew C. Perkins; Richard C. M. Pearson; Merlin Crossley

ABSTRACT The CACCC-box binding protein erythroid Krüppel-like factor (EKLF/KLF1) is a master regulator that directs the expression of many important erythroid genes. We have previously shown that EKLF drives transcription of the gene for a second KLF, basic Krüppel-like factor, or KLF3. We have now tested the in vivo role of KLF3 in erythroid cells by examining Klf3 knockout mice. KLF3-deficient adults exhibit a mild compensated anemia, including enlarged spleens, increased red pulp, and a higher percentage of erythroid progenitors, together with elevated reticulocytes and abnormal erythrocytes in the peripheral blood. Impaired erythroid maturation is also observed in the fetal liver. We have found that KLF3 levels rise as erythroid cells mature to become TER119+. Consistent with this, microarray analysis of both TER119− and TER119+ erythroid populations revealed that KLF3 is most critical at the later stages of erythroid maturation and is indeed primarily a transcriptional repressor. Notably, many of the genes repressed by KLF3 are also known to be activated by EKLF. However, the majority of these are not currently recognized as erythroid-cell-specific genes. These results reveal the molecular and physiological function of KLF3, defining it as a feedback repressor that counters the activity of EKLF at selected target genes to achieve normal erythropoiesis.


Molecular and Cellular Biology | 2013

Generation of Mice Deficient in both KLF3/BKLF and KLF8 Reveals a Genetic Interaction and a Role for These Factors in Embryonic Globin Gene Silencing

Alister P. W. Funnell; Ka Sin Mak; Natalie A. Twine; Gregory J. Pelka; Laura J. Norton; Tania Radziewic; Melinda Power; Marc R. Wilkins; Kim S. Bell-Anderson; Stuart T. Fraser; Andrew C. Perkins; Patrick P.L. Tam; Richard C. M. Pearson; Merlin Crossley

ABSTRACT Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.


Genome Biology | 2014

Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor

Ka Sin Mak; Jon Burdach; Laura J. Norton; Richard C. M. Pearson; Merlin Crossley; Alister P. W. Funnell

BACKGROUND Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. RESULTS Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. CONCLUSIONS We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing.


Blood Advances | 2017

KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells

Laura J. Norton; Alister P. W. Funnell; Jon Burdach; Beeke Wienert; Ryo Kurita; Yukio Nakamura; Sjaak Philipsen; Richard C. M. Pearson; Kate G. R. Quinlan; Merlin Crossley

Genes encoding the human β-like hemoglobin proteins undergo a developmental switch from fetal γ-globin to adult β-globin expression around the time of birth. β-hemoglobinopathies, such as sickle-cell disease and β-thalassemia, result from mutations affecting the adult β-globin gene. The only treatment options currently available carry significant adverse effects. Analyses of heritable variations in fetal hemoglobin (HbF) levels have provided evidence that reactivation of the silenced fetal γ-globin genes in adult erythroid cells is a promising therapy. The γ-globin repressor BCL11A has become the major focus, with several studies investigating its regulation and function as a first step to inhibiting its expression or activity. However, a second repression mechanism was recently shown to be mediated by the transcription factor ZBTB7A/LRF, suggesting that understanding the regulation of ZBTB7A may also be useful. Here we show that Krüppel-like factor 1 (KLF1) directly drives expression of ZBTB7A in erythroid cells by binding to its proximal promoter. We have also uncovered an erythroid-specific regulation mechanism, leading to the upregulation of a novel ZBTB7A transcript in the erythroid compartment. The demonstration that ZBTB7A, like BCL11A, is a KLF1 target gene also fits with the observation that reduced KLF1 expression or activity is associated with HbF derepression.


Journal of Biological Chemistry | 2016

Krüppel-like Factor 3 (KLF3/BKLF) Is Required for Widespread Repression of the Inflammatory Modulator Galectin-3 (Lgals3)

Alexander J. Knights; Jinfen J. Yik; Hanapi Mat Jusoh; Laura J. Norton; Alister P. W. Funnell; Richard C. M. Pearson; Kim S. Bell-Anderson; Merlin Crossley; Kate G. R. Quinlan

The Lgals3 gene encodes a multifunctional β-galactoside-binding protein, galectin-3. Galectin-3 has been implicated in a broad range of biological processes from chemotaxis and inflammation to fibrosis and apoptosis. The role of galectin-3 as a modulator of inflammation has been studied intensively, and recent evidence suggests that it may serve as a protective factor in obesity and other metabolic disorders. Despite considerable interest in galectin-3, little is known about its physiological regulation at the transcriptional level. Here, using knockout mice, chromatin immunoprecipitations, and cellular and molecular analyses, we show that the zinc finger transcription factor Krüppel-like factor 3 (KLF3) directly represses galectin-3 transcription. We find that galectin-3 is broadly up-regulated in KLF3-deficient mouse tissues, that KLF3 occupies regulatory regions of the Lgals3 gene, and that KLF3 directly binds its cognate elements (CACCC boxes) in the galectin-3 promoter and represses its activation in cellular assays. We also provide mechanistic insights into the regulation of Lgals3, demonstrating that C-terminal binding protein (CtBP) is required to drive optimal KLF3-mediated silencing. These findings help to enhance our understanding of how expression of the inflammatory modulator galectin-3 is controlled, opening up avenues for potential therapeutic interventions in the future.


International Journal of Cell Biology | 2011

Cellular Reprogramming toward the Erythroid Lineage

Laura J. Norton; Alister P. W. Funnell; Richard C. M. Pearson; Merlin Crossley

Haemoglobinopathies such as thalassaemia and sickle cell disease present a major health burden. Currently, the main forms of treatment for these diseases are packed red blood cell transfusions and the administration of drugs which act to nonspecifically reactivate the production of foetal haemoglobin. These treatments are ongoing throughout the life of the patient and are associated with a number of risks, such as limitations in available blood for transfusion, infections, iron overload, immune rejection, and side effects associated with the drug treatments. The field of cellular reprogramming has advanced significantly in the last few years and has recently culminated in the successful production of erythrocytes in culture. This paper will discuss cellular reprogramming and its potential relevance to the treatment of haemoglobinopathies.


Scientific Reports | 2017

Direct competition between DNA binding factors highlights the role of Krüppel-like Factor 1 in the erythroid/megakaryocyte switch

Laura J. Norton; Samantha Hallal; Elizabeth S. Stout; Alister P. W. Funnell; Richard C. M. Pearson; Merlin Crossley; Kate G. R. Quinlan

The Krüppel-like factor (KLF) family of transcription factors play critical roles in haematopoiesis. KLF1, the founding member of the family, has been implicated in the control of both erythropoiesis and megakaryopoiesis. Here we describe a novel system using an artificial dominant negative isoform of KLF1 to investigate the role of KLF1 in the erythroid/megakaryocytic switch in vivo. We developed murine cell lines stably overexpressing a GST-KLF1 DNA binding domain fusion protein (GST-KLF1 DBD), as well as lines expressing GST only as a control. Interestingly, overexpression of GST-KLF1 DBD led to an overall reduction in erythroid features and an increase in megakaryocytic features indicative of a reduced function of endogenous KLF1. We simultaneously compared in vivo DNA occupancy of both endogenous KLF1 and GST-KLF1 DBD by ChIP qPCR. Here we found that GST-KLF1 DBD physically displaces endogenous KLF1 at a number of loci, providing novel in vivo evidence of direct competition between DNA binding proteins. These results highlight the role of KLF1 in the erythroid/megakaryocyte switch and suggest that direct competition between transcription factors with similar consensus sequences is an important mechanism in transcriptional regulation.

Collaboration


Dive into the Laura J. Norton's collaboration.

Top Co-Authors

Avatar

Merlin Crossley

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alister P. W. Funnell

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Richard C. M. Pearson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jon Burdach

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ka Sin Mak

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Kate G. R. Quinlan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beeke Wienert

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Marc R. Wilkins

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Natalie A. Twine

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge