Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura J. Rojas is active.

Publication


Featured researches published by Laura J. Rojas.


Antimicrobial Agents and Chemotherapy | 2017

Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae?

Steven A. Marshall; Andrea M. Hujer; Laura J. Rojas; Krisztina M. Papp-Wallace; Romney M. Humphries; Brad Spellberg; Kristine M. Hujer; Emma K. Marshall; Susan D. Rudin; Federico Perez; Brigid Wilson; Ronald B. Wasserman; Linda Chikowski; David L. Paterson; Alejandro J. Vila; David van Duin; Barry N. Kreiswirth; Henry F. Chambers; Vance G. Fowler; Michael R. Jacobs; Mark Pulse; William J. Weiss; Robert A. Bonomo

ABSTRACT Based upon knowledge of the hydrolytic profile of major β-lactamases found in Gram-negative bacteria, we tested the efficacy of the combination of ceftazidime-avibactam (CAZ-AVI) with aztreonam (ATM) against carbapenem-resistant enteric bacteria possessing metallo-β-lactamases (MBLs). Disk diffusion and agar-based antimicrobial susceptibility testing were initially performed to determine the in vitro efficacy of a unique combination of CAZ-AVI and ATM against 21 representative Enterobacteriaceae isolates with a complex molecular background that included blaIMP, blaNDM, blaOXA-48, blaCTX-M, blaAmpC, and combinations thereof. Time-kill assays were conducted, and the in vivo efficacy of this combination was assessed in a murine neutropenic thigh infection model. By disk diffusion assay, all 21 isolates were resistant to CAZ-AVI alone, and 19/21 were resistant to ATM. The in vitro activity of CAZ-AVI in combination with ATM against diverse Enterobacteriaceae possessing MBLs was demonstrated in 17/21 isolates, where the zone of inhibition was ≥21 mm. All isolates demonstrated a reduction in CAZ-AVI agar dilution MICs with the addition of ATM. At 2 h, time-kill assays demonstrated a ≥4-log10-CFU decrease for all groups that had CAZ-AVI with ATM (8 μg/ml) added, compared to the group treated with CAZ-AVI alone. In the murine neutropenic thigh infection model, an almost 4-log10-CFU reduction was noted at 24 h for CAZ-AVI (32 mg/kg every 8 h [q8h]) plus ATM (32 mg/kg q8h) versus CAZ-AVI (32 mg/kg q8h) alone. The data presented herein require us to carefully consider this new therapeutic combination to treat infections caused by MBL-producing Enterobacteriaceae.


Antimicrobial Agents and Chemotherapy | 2015

Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia

Adriana Correa; Rosa del Campo; Marcela Perenguez; Victor M. Blanco; Mercedes Rodríguez-Baños; Federico Perez; Juan José Maya; Laura J. Rojas; Rafael Cantón; Cesar A. Arias; Maria Virginia Villegas

ABSTRACT The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia.


Emerging Infectious Diseases | 2014

Carbapenem-resistant Enterobacter cloacae isolates producing KPC-3, North Dakota, USA.

Lee M. Kiedrowski; Dubert M. Guerrero; Federico Perez; Roberto Viau; Laura J. Rojas; Maria F. Mojica; Susan D. Rudin; Andrea M. Hujer; Steven H. Marshall; Robert A. Bonomo

To the Editor: Carbapenem-resistant Enterobacteriaceae (CRE) continue to emerge as a serious public health threat throughout the world (1). CRE infections in the United States are often mediated by acquisition of Klebsiella pneumoniae carbapenemase (KPC) expressed by Klebsiella spp., although KPC is also found in other genera (2). The spread of KPC-producing, gram-negative bacteria in hospitals has been linked to severity of illness, co-existing medical conditions, exposure to antimicrobial drugs, and need for chronic care (3). After reporting of CRE infections to the North Dakota Department of Health became mandatory in 2011, a total of 20 CRE cases were noted in 12 of 53 counties (2.9 cases/100,000 population [4]). Most cases involved infection with Enterobacter cloacae and occurred in Cass County, where the state’s largest city, Fargo, is located. We describe an outbreak of clonal carbapenem-resistant E. cloacae in a health care system in Fargo. Sanford Health is a 583-bed, acute-care facility, representing ≈70% of acute-care beds in Fargo. The hospital handles >27,000 admissions/year and serves as a referral center for a large area of the state, and the only long-term acute-care (LTAC) facility in the eastern half of the state operates on its campus. During December 2011–December 2012, all isolates of Enterobacteriaceae with reduced susceptibility to ertapenem (MIC ≥1 µg/mL) identified at the hospital’s clinical microbiology laboratory were screened for carbapenemase production by using the modified Hodge test (mHT), according to Clinical and Laboratory Standards Institute recommendations (5). Identification and susceptibility testing were done with the MicroScan system (Siemens Healthcare Diagnostics, Tarrytown, NY, USA); MICs of carbapenems were confirmed with Etest (bioMerieux, Durham, NC, USA). Three carbapenem-resistant E. cloacae isolates from documented cases of CRE infection at the hospital during 2010 were analyzed for comparison. To characterize carbapenem-resistant and mHT-positive isolates, we used PCR to amplify and sequence the carbapenemase genes blaIMP, blaNDM, blaVIM, and blaKPC by using established methods (6). The upstream sequence of blaKPC-positive strains was analyzed to determine the isoform of the transposon Tn4401 that harbored blaKPC (7). We investigated genetic similarity among isolates by repetitive sequence-based PCR; isolates with >95% similarity were considered clonal (6). We also sequenced the highly conserved hsp60 gene (8) and attempted conjugative transfer of the blaKPC gene by growing KPC-producing E. cloacae along with sodium azide–resistant Escherichia coli J-53. As part of the study, we examined records of patients from whom carbapenem-resistant E. cloacae was isolated. The study was approved by the Institutional Review Board at Sanford Health. During December 2011–December 2012, a total of 19 single-patient E. cloacae isolates and 1 E. aerogenes isolate had positive mHT results. blaKPC was detected in 17 of the 19 E. cloacae isolates and in the 3 carbapenem-resistant E. cloacae isolates from 2010. For all 20 of those isolates, sequencing revealed blaKPC-3 in association with isoform d of the transposon Tn4401, and all isolates were clonally related (Figure). All 20 isolates also had an identical hsp60 sequence belonging to cluster VI in the Hoffman and Roggenkamp scheme (8). Conjugation of a blaKPC-containing plasmid into E. coli J-53 was successful for 1 strain. Figure Genetic typing of carbapenem-resistant Enterobacter cloacae identified from patients at Sanford Health in Fargo, North Dakota, USA. Repetitive sequence–based PCR was used. The dendrogram at left displays the percentage similarity among band patterns ... All 20 of the patients from whom KPC-producing CRE isolates were obtained (17 from this study, 3 from 2010) had been hospitalized at Sanford Health during the 3 months before CRE isolation; 13 (65%) were admitted to intensive care. In addition, 13 (65%) patients had been admitted to the LTAC during the year before CRE isolation. Co-colonization with multidrug-resistant bacteria was documented in 16 (80%) patients, including extended-spectrum β-lactamase–producing and carbapenem-resistant organisms in 4 and 2 patients, respectively. Seven (35%) patients died; 3 (15%) deaths were attributed to CRE infection. One of the patients was a neonate 30 days of age. The finding of KPC-3–producing E. cloacae in North Dakota contrasts with the predominant epidemiology of CRE across the United States. Most CRE cases nationwide are caused by KPC-producing K. pneumoniae (2). KPC-type β-lactamases were previously identified in diverse strains of Enterobacter spp. from an urban health care system in Detroit, accounting for ≈15% of CRE (9). In contrast, our genetic analysis reveals a uniform genetic background among KPC-producing E. cloacae, which suggests horizontal dissemination of an outbreak strain. Because active surveillance programs do not exist at our facility, this study probably underestimates the extent of CRE spread. We found that patients with KPC-producing E. cloacae in this sample were exposed to an LTAC and concomitantly were colonized or infected with other multidrug-resistant organisms (9). Although the spatio-temporal origin of the outbreak (acute care vs. LTAC) remains undefined, these findings likely reflect longer exposure to the continuum of care and higher rates of co-existing conditions within the LTAC population. This outbreak of KPC-producing E. cloacae infections in a health care system in North Dakota highlights the infection control challenges of long-term care facilities and the potential role they play in CRE dissemination.


Antimicrobial Agents and Chemotherapy | 2016

Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design

Laura J. Rojas; Magdalena A. Taracila; Krisztina M. Papp-Wallace; Christopher R. Bethel; Emilia Caselli; Chiara Romagnoli; Marisa L. Winkler; Brad Spellberg; Fabio Prati; Robert A. Bonomo

ABSTRACT Boronic acid transition state inhibitors (BATSIs) are competitive, reversible β-lactamase inhibitors (BLIs). In this study, a series of BATSIs with selectively modified regions (R1, R2, and amide group) were strategically designed and tested against representative class A β-lactamases of Klebsiella pneumoniae, KPC-2 and SHV-1. Firstly, the R1 group of compounds 1a to 1c and 2a to 2e mimicked the side chain of cephalothin, whereas for compounds 3a to 3c, 4a, and 4b, the thiophene ring was replaced by a phenyl, typical of benzylpenicillin. Secondly, variations in the R2 groups which included substituted aryl side chains (compounds 1a, 1b, 1c, 3a, 3b, and 3c) and triazole groups (compounds 2a to 2e) were chosen to mimic the thiazolidine and dihydrothiazine ring of penicillins and cephalosporins, respectively. Thirdly, the amide backbone of the BATSI, which corresponds to the amide at C-6 or C-7 of β-lactams, was also changed to the following bioisosteric groups: urea (compound 3b), thiourea (compound 3c), and sulfonamide (compounds 4a and 4b). Among the compounds that inhibited KPC-2 and SHV-1 β-lactamases, nine possessed 50% inhibitory concentrations (IC50s) of ≤600 nM. The most active compounds contained the thiopheneacetyl group at R1 and for the chiral BATSIs, a carboxy- or hydroxy-substituted aryl group at R2. The most active sulfonamido derivative, compound 4b, lacked an R2 group. Compound 2b (S02030) was the most active, with acylation rates (k2/K) of 1.2 ± 0.2 × 104 M−1 s−1 for KPC-2 and 4.7 ± 0.6 × 103 M−1 s−1 for SHV-1, and demonstrated antimicrobial activity against Escherichia coli DH10B carrying blaSHV variants and blaKPC-2 or blaKPC-3 and against clinical strains of Klebsiella pneumoniae and E. coli producing different class A β-lactamase genes. At most, MICs decreased from 16 to 0.5 mg/liter.


Antimicrobial Agents and Chemotherapy | 2016

Crystal Structures of KPC-2 and SHV-1 β-Lactamases in Complex with the Boronic Acid Transition State Analog S02030

Nhu Q. Nguyen; Nikhil P. Krishnan; Laura J. Rojas; Fabio Prati; Emilia Caselli; Chiara Romagnoli; Robert A. Bonomo; Focco van den Akker

ABSTRACT Resistance to expanded-spectrum cephalosporins and carbapenems has rendered certain strains of Klebsiella pneumoniae the most problematic pathogens infecting patients in the hospital and community. This broad-spectrum resistance to β-lactamases emerges in part via the expression of KPC-2 and SHV-1 β-lactamases and variants thereof. KPC-2 carbapenemase is particularly worrisome, as the genetic determinant encoding this β-lactamase is rapidly spread via plasmids. Moreover, KPC-2, a class A enzyme, is difficult to inhibit with mechanism-based inactivators (e.g., clavulanate). In order to develop new β-lactamase inhibitors (BLIs) to add to the limited available armamentarium that can inhibit KPC-2, we have structurally probed the boronic acid transition state analog S02030 for its inhibition of KPC-2 and SHV-1. S02030 contains a boronic acid, a thiophene, and a carboxyl triazole moiety. We present here the 1.54- and 1.87-Å resolution crystal structures of S02030 bound to SHV-1 and KPC-2 β-lactamases, respectively, as well as a comparative analysis of the S02030 binding modes, including a previously determined S02030 class C ADC-7 β-lactamase complex. S02030 is able to inhibit vastly different serine β-lactamases by interacting with the conserved features of these active sites, which includes (i) forming the bond with catalytic serine via the boron atom, (ii) positioning one of the boronic acid oxygens in the oxyanion hole, and (iii) utilizing its amide moiety to make conserved interactions across the width of the active site. In addition, S02030 is able to overcome more distantly located structural differences between the β-lactamases. This unique feature is achieved by repositioning the more polar carboxyl-triazole moiety, generated by click chemistry, to create polar interactions as well as reorient the more hydrophobic thiophene moiety. The former is aided by the unusual polar nature of the triazole ring, allowing it to potentially form a unique C—H…O 2.9-Å hydrogen bond with S130 in KPC-2.


Antimicrobial Agents and Chemotherapy | 2017

A Prospective Cohort Multicenter Study of Molecular Epidemiology and Phylogenomics of Staphylococcus aureus Bacteremia in Nine Latin American Countries

Cesar A. Arias; Jinnethe Reyes; Lina P. Carvajal; Sandra Rincon; Lorena Diaz; Diana Panesso; Gabriel Ibarra; Rafael Rios; Jose M. Munita; Mauro José Costa Salles; Carlos Alvarez-Moreno; Jaime Labarca; Coralith García; Carlos M. Luna; Carlos Mejía-Villatoro; Jeannete Zurita; Manuel Guzman-Blanco; Eduardo Rodríguez-Noriega; Apurva Narechania; Laura J. Rojas; Paul J. Planet; George M. Weinstock; Eduardo Gotuzzo; Carlos Seas

ABSTRACT Staphylococcus aureus is an important pathogen causing a spectrum of diseases ranging from mild skin and soft tissue infections to life-threatening conditions. Bloodstream infections are particularly important, and the treatment approach is complicated by the presence of methicillin-resistant S. aureus (MRSA) isolates. The emergence of new genetic lineages of MRSA has occurred in Latin America (LA) with the rise and dissemination of the community-associated USA300 Latin American variant (USA300-LV). Here, we prospectively characterized bloodstream MRSA recovered from selected hospitals in 9 Latin American countries. All isolates were typed by pulsed-field gel electrophoresis (PFGE) and subjected to antibiotic susceptibility testing. Whole-genome sequencing was performed on 96 MRSA representatives. MRSA represented 45% of all (1,185 S. aureus) isolates. The majority of MRSA isolates belonged to clonal cluster (CC) 5. In Colombia and Ecuador, most isolates (≥72%) belonged to the USA300-LV lineage (CC8). Phylogenetic reconstructions indicated that MRSA isolates from participating hospitals belonged to three major clades. Clade A grouped isolates with sequence type 5 (ST5), ST105, and ST1011 (mostly staphylococcal chromosomal cassette mec [SCCmec] I and II). Clade B included ST8, ST88, ST97, and ST72 strains (SCCmec IV, subtypes a, b, and c/E), and clade C grouped mostly Argentinian MRSA belonging to ST30. In summary, CC5 MRSA was prevalent in bloodstream infections in LA with the exception of Colombia and Ecuador, where USA300-LV is now the dominant lineage. Clonal replacement appears to be a common phenomenon, and continuous surveillance is crucial to identify changes in the molecular epidemiology of MRSA.


Antimicrobial Agents and Chemotherapy | 2016

Initial assessment of the molecular epidemiology of blaNDM-1 in Colombia

Laura J. Rojas; Meredith S. Wright; Elsa De La Cadena; Gabriel Motoa; Kristine M. Hujer; Maria Virginia Villegas; Mark D. Adams; Robert A. Bonomo

ABSTRACT We report complete genome sequences of four blaNDM-1-harboring Gram-negative multidrug-resistant (MDR) isolates from Colombia. The blaNDM-1 genes were located on 193-kb Inc FIA, 178-kb Inc A/C2, and 47-kb (unknown Inc type) plasmids. Multilocus sequence typing (MLST) revealed that these isolates belong to sequence type 10 (ST10) (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumannii and Acinetobacter nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid in E. coli contained a novel complex transposon (Tn125 and Tn5393 with three copies of blaNDM-1) and a recombination “hot spot” for the acquisition of new resistance determinants.


Infection Control and Hospital Epidemiology | 2017

The antimicrobial scrub contamination and transmission (ASCOT) trial: A three-arm, blinded, randomized controlled trial with crossover design to determine the efficacy of antimicrobial-impregnated scrubs in preventing healthcare provider contamination

Deverick J. Anderson; Rachel M. Addison; Yuliya Lokhnygina; Bobby Warren; Batu K. Sharma-Kuinkel; Laura J. Rojas; Susan D. Rudin; Sarah S. Lewis; Rebekah W. Moehring; David J. Weber; William A. Rutala; Robert A. Bonomo; Vance G. Fowler; Daniel J. Sexton

OBJECTIVE To determine whether antimicrobial-impregnated textiles decrease the acquisition of pathogens by healthcare provider (HCP) clothing. DESIGN We completed a 3-arm randomized controlled trial to test the efficacy of 2 types of antimicrobial-impregnated clothing compared to standard HCP clothing. Cultures were obtained from each nurse participant, the healthcare environment, and patients during each shift. The primary outcome was the change in total contamination on nurse scrubs, measured as the sum of colony-forming units (CFU) of bacteria. PARTICIPANTS AND SETTING Nurses working in medical and surgical ICUs in a 936-bed tertiary-care hospital. INTERVENTION Nurse subjects wore standard cotton-polyester surgical scrubs (control), scrubs that contained a complex element compound with a silver-alloy embedded in its fibers (Scrub 1), or scrubs impregnated with an organosilane-based quaternary ammonium and a hydrophobic fluoroacrylate copolymer emulsion (Scrub 2). Nurse participants were blinded to scrub type and randomly participated in all 3 arms during 3 consecutive 12-hour shifts in the intensive care unit. RESULTS In total, 40 nurses were enrolled and completed 3 shifts. Analyses of 2,919 cultures from the environment and 2,185 from HCP clothing showed that scrub type was not associated with a change in HCP clothing contamination (P=.70). Mean difference estimates were 0.118 for the Scrub 1 arm (95% confidence interval [CI], -0.206 to 0.441; P=.48) and 0.009 for the Scrub 2 rm (95% CI, -0.323 to 0.342; P=.96) compared to the control. HCP became newly contaminated with important pathogens during 19 of the 120 shifts (16%). CONCLUSIONS Antimicrobial-impregnated scrubs were not effective at reducing HCP contamination. However, the environment is an important source of HCP clothing contamination. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT 02645214 Infect Control Hosp Epidemiol 2017;38:1147-1154.


Antimicrobial Agents and Chemotherapy | 2017

NDM-5 and OXA-181 Beta-Lactamases, a Significant Threat Continues To Spread in the Americas

Laura J. Rojas; Andrea M. Hujer; Susan D. Rudin; Meredith S. Wright; T. Nicholas Domitrovic; Steven H. Marshall; Kristine M. Hujer; Sandra S. Richter; Eric Cober; Federico Perez; Mark D. Adams; David van Duin; Robert A. Bonomo

ABSTRACT Among Gram-negative bacteria, carbapenem-resistant infections pose a serious and life-threatening challenge. Here, the CRACKLE network reports a sentinel detection and characterization of a carbapenem-resistant Klebsiella pneumoniae ST147 isolate harboring blaNDM-5 and blaOXA-181 from a young man who underwent abdominal surgery in India. blaNDM-5 was located on an IncFII plasmid of ≈90 kb, whereas blaOXA-181 was chromosomally encoded. Resistome and genome analysis demonstrated multiple copies of the transposable element IS26 and a “hot-spot region” in the IncFII plasmid.


Journal of the Pediatric Infectious Diseases Society | 2016

First Report of a Verona Integron-Encoded Metallo-β-Lactamase-Producing Klebsiella pneumoniae Infection in a Child in the United States

Pranita D. Tamma; Nuntra Suwantarat; Susan D. Rudin; Latania K. Logan; Patricia J. Simner; Laura J. Rojas; Maria F. Mojica; Karen C. Carroll; Robert A. Bonomo

We report the first case of a child in the United States infected with an organism producing a Verona Integron-Encoded Metallo-β-Lactamase. This child succumbed to a ventilator-associated pneumonia caused by a Klebsiella pneumoniae producing this resistance mechanism.

Collaboration


Dive into the Laura J. Rojas's collaboration.

Top Co-Authors

Avatar

Robert A. Bonomo

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Susan D. Rudin

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Federico Perez

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Andrea M. Hujer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Kristine M. Hujer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

David van Duin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

T. Nicholas Domitrovic

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Mark D. Adams

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Steven H. Marshall

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge