Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura K. Conlin is active.

Publication


Featured researches published by Laura K. Conlin.


Nature Genetics | 2003

Natural variation in human gene expression assessed in lymphoblastoid cells

Vivian G. Cheung; Laura K. Conlin; Teresa M. Weber; Melissa Arcaro; Kuang-Yu Jen; Michael Morley; Richard S. Spielman

The sequencing of the human genome has resulted in greater attention to genetic variation among individuals, and variation at the DNA sequence level is now being extensively studied. At the same time, it has become possible to study variation at the level of gene expression by various methods. At present, it is largely unknown how widespread this variation in transcript levels is over the entire genome and to what extent individual differences in expression level are genetically determined. In the present study, we used lymphoblastoid cells to examine variation in gene expression and identified genes whose transcript levels differed greatly among unrelated individuals. We also found evidence for familial aggregation of expression phenotype by comparing variation among unrelated individuals, among siblings within families and between monozygotic twins. These observations suggest that there is a genetic contribution to polymorphic variation in the level of gene expression.


Genome Research | 2009

High-resolution mapping and analysis of copy number variations in the human genome: A data resource for clinical and research applications

Tamim H. Shaikh; Xiaowu Gai; Juan C. Perin; Joseph T. Glessner; Hongbo M. Xie; Kevin Murphy; R. O'Hara; Tracy Casalunovo; Laura K. Conlin; M. D'Arcy; Edward C. Frackelton; Elizabeth A. Geiger; Chad R. Haldeman-Englert; Marcin Imielinski; Cecilia Kim; Livija Medne; Kiran Annaiah; Jonathan P. Bradfield; E. Dabaghyan; Andrew W. Eckert; Chioma C. Onyiah; S. Ostapenko; Frederick G. Otieno; Erin Santa; Julie L. Shaner; Robert Skraban; Ryan M. Smith; Josephine Elia; Elizabeth Goldmuntz; Nancy B. Spinner

We present a database of copy number variations (CNVs) detected in 2026 disease-free individuals, using high-density, SNP-based oligonucleotide microarrays. This large cohort, comprised mainly of Caucasians (65.2%) and African-Americans (34.2%), was analyzed for CNVs in a single study using a uniform array platform and computational process. We have catalogued and characterized 54,462 individual CNVs, 77.8% of which were identified in multiple unrelated individuals. These nonunique CNVs mapped to 3272 distinct regions of genomic variation spanning 5.9% of the genome; 51.5% of these were previously unreported, and >85% are rare. Our annotation and analysis confirmed and extended previously reported correlations between CNVs and several genomic features such as repetitive DNA elements, segmental duplications, and genes. We demonstrate the utility of this data set in distinguishing CNVs with pathologic significance from normal variants. Together, this analysis and annotation provides a useful resource to assist with the assessment of CNVs in the contexts of human variation, disease susceptibility, and clinical molecular diagnostics.


Human Molecular Genetics | 2010

Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis

Laura K. Conlin; Brian D. Thiel; Carsten G. Bönnemann; Livija Medne; Linda M. Ernst; Elaine H. Zackai; Matthew A. Deardorff; Ian D. Krantz; Hakon Hakonarson; Nancy B. Spinner

Mosaic aneuploidy and uniparental disomy (UPD) arise from mitotic or meiotic events. There are differences between these mechanisms in terms of (i) impact on embryonic development; (ii) co-occurrence of mosaic trisomy and UPD and (iii) potential recurrence risks. We used a genome-wide single nucleotide polymorphism (SNP) array to study patients with chromosome aneuploidy mosaicism, UPD and one individual with XX/XY chimerism to gain insight into the developmental mechanism and timing of these events. Sixteen cases of mosaic aneuploidy originated mitotically, and these included four rare trisomies and all of the monosomies, consistent with the influence of selective factors. Five trisomies arose meiotically, and three of the five had UPD in the disomic cells, confirming increased risk for UPD in the case of meiotic non-disjunction. Evidence for the meiotic origin of aneuploidy and UPD was seen in the patterns of recombination visible during analysis with 1-3 crossovers per chromosome. The mechanisms of formation of the UPD included trisomy rescue, with and without concomitant trisomy, monosomy rescue, and mitotic formation of a mosaic segmental UPD. UPD was also identified in an XX/XY chimeric individual, with one cell line having complete maternal UPD consistent with a parthenogenetic origin. Utilization of SNP arrays allows simultaneous evaluation of genomic alterations and insights into aneuploidy and UPD mechanisms. Differentiation of mitotic and meiotic origins for aneuploidy and UPD supports existence of selective factors against full trisomy of some chromosomes in the early embryo and provides data for estimation of recurrence and disease mechanisms.


Genome Research | 2015

Actionable exomic incidental findings in 6503 participants: challenges of variant classification

Laura M. Amendola; Michael O. Dorschner; Peggy D. Robertson; Joseph Salama; Ragan Hart; Brian H. Shirts; Mitzi L. Murray; Mari J. Tokita; Carlos J. Gallego; Daniel Seung Kim; James Bennett; David R. Crosslin; Jane Ranchalis; Kelly L. Jones; Elisabeth A. Rosenthal; Ella R. Jarvik; Andy Itsara; Emily H. Turner; Daniel S. Herman; Jennifer Schleit; Amber A. Burt; Seema M. Jamal; Jenica L. Abrudan; Andrew D. Johnson; Laura K. Conlin; Matthew C. Dulik; Avni Santani; Danielle R. Metterville; Melissa A. Kelly; Ann Katherine M. Foreman

Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base.


American Journal of Human Genetics | 2016

Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium

Laura M. Amendola; Gail P. Jarvik; Michael C. Leo; Heather M. McLaughlin; Yassmine Akkari; Michelle D. Amaral; Jonathan S. Berg; Sawona Biswas; Kevin M. Bowling; Laura K. Conlin; Greg M. Cooper; Michael O. Dorschner; Matthew C. Dulik; Arezou A. Ghazani; Rajarshi Ghosh; Robert C. Green; Ragan Hart; Carrie Horton; Jennifer J. Johnston; Matthew S. Lebo; Aleksandar Milosavljevic; Jeffrey Ou; Christine M. Pak; Ronak Y. Patel; Sumit Punj; Carolyn Sue Richards; Joseph Salama; Natasha T. Strande; Yaping Yang; Sharon E. Plon

Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratorys own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease.


Clinics in Laboratory Medicine | 2011

Diagnostic Implications of Excessive Homozygosity Detected by SNP-Based Microarrays: Consanguinity, Uniparental Disomy, and Recessive Single-Gene Mutations

Hutton M. Kearney; Joseph B. Kearney; Laura K. Conlin

Single nucleotide polymorphism–based microarrays used in diagnostic laboratories for the detection of copy number alterations also provide data allowing for surveillance of the genome for regions of homozygosity. The finding of one (or more) long contiguous stretch of homozygosity (LCSH) in a constitutional (nonneoplastic) diagnostic setting can lead to the diagnosis of uniparental disomy involving an imprinted chromosome or homozygous single gene mutations. The focus of this review is to describe the analytical detection of LCSH, clinical implications of excessive homozygosity, and considerations for follow-up diagnostic testing.


BMC Medical Genetics | 2011

Mechanisms of ring chromosome formation, ring instability and clinical consequences.

Roberta Santos Guilherme; Vera Ayres Meloni; Chong Ae Kim; Renata Pellegrino; Sylvia Satomi Takeno; Nancy B. Spinner; Laura K. Conlin; Denise Maria Christofolini; Leslie Domenici Kulikowski; Maria Isabel Melaragno

BackgroundThe breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients.MethodsSeveral techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization).ResultsThe ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV).ConclusionsWe concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).


Molecular and Cellular Biology | 2007

The Natural Osmolyte Trehalose Is a Positive Regulator of the Heat-Induced Activity of Yeast Heat Shock Transcription Factor

Laura K. Conlin; Hillary C. M. Nelson

ABSTRACT In Saccharomyces cerevisiae, the intracellular concentration of trehalose increases rapidly in response to many environmental stresses, including heat shock. These high trehalose levels have been correlated with tolerance to adverse conditions and led to the model that trehalose functions as a chemical cochaperone. Here, we show that the transcriptional activity of Hsf1 during the heat shock response depends on trehalose. Strains with low levels of trehalose have a diminished transcriptional response to heat shock, while strains with high levels of trehalose have an enhanced transcriptional response to heat shock. The enhanced transcriptional response does not require the other heat-responsive transcription factors Msn2/4 but is dependent upon heat and Hsf1. In addition, the phosphorylation levels of Hsf1 correlate with both transcriptional activity and the presence of trehalose. These in vivo results support a new role for trehalose, where trehalose directly modifies the dynamic range of Hsf1 activity and therefore influences heat shock protein mRNA levels in response to stress.


American Journal of Medical Genetics Part A | 2012

Genome-wide SNP Genotyping Identifies the Stereocilin (STRC) Gene as a Major Contributor to Pediatric Bilateral Sensorineural Hearing Impairment

Lauren J. Francey; Laura K. Conlin; Hanna E. Kadesch; Dinah Clark; Donna Berrodin; Yi Sun; Joe Glessner; Hakon Hakonarson; Chaim Jalas; Chaim Landau; Nancy B. Spinner; Margaret A. Kenna; Michal Sagi; Heidi L. Rehm; Ian D. Krantz

Hearing loss is the most prevalent sensory perception deficit in humans, affecting 1/500 newborns, can be syndromic or nonsyndromic and is genetically heterogeneous. Nearly 80% of inherited nonsyndromic bilateral sensorineural hearing loss (NBSNHI) is autosomal recessive. Although many causal genes have been identified, most are minor contributors, except for GJB2, which accounts for nearly 50% of all recessive cases of severe to profound congenital NBSNHI in some populations. More than 60% of children with a NBSNHI do not have an identifiable genetic cause. To identify genetic contributors, we genotyped 659 GJB2 mutation negative pediatric probands with NBSNHI and assayed for copy number variants (CNVs). After identifying 8 mild‐moderate NBSNHI probands with a Chr15q15.3 deletion encompassing the Stereocilin (STRC) gene amongst this cohort, sequencing of STRC was undertaken in these probands as well as 50 probands and 14 siblings with mild‐moderate NBSNHI and 40 probands with moderately severe‐profound NBSNHI who were GJB2 mutation negative. The existence of a STRC pseudogene that is 99.6% homologous to the STRC coding region has made the sequencing interpretation complicated. We identified 7/50 probands in the mild‐moderate cohort to have biallelic alterations in STRC, not including the 8 previously identified deletions. We also identified 2/40 probands to have biallelic alterations in the moderately severe‐profound NBSNHI cohort, notably no large deletions in combination with another variant were found in this cohort. The data suggest that STRC may be a common contributor to NBSNHI among GJB2 mutation negative probands, especially in those with mild to moderate hearing impairment.


European Journal of Medical Genetics | 2010

Interstitial microduplication of Xp22.31: Causative of intellectual disability or benign copy number variant?

Feng Li; Yiping Shen; Udo Köhler; Freddie H. Sharkey; Deepa Menon; Laurence Coulleaux; Valérie Malan; Marlène Rio; Dominic J. McMullan; Helen Cox; Kerry A. Fagan; Lorraine Gaunt; Kay Metcalfe; Uwe Heinrich; Gordon Hislop; Una Maye; Maxine Sutcliffe; Bai-Lin Wu; Brian D. Thiel; Surabhi Mulchandani; Laura K. Conlin; Nancy B. Spinner; Kathleen M. Murphy; Denise Batista

The use of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays has dramatically altered the approach to identification of genetic alterations that can explain intellectual disability and /or congenital anomalies. However, the discovery of numerous copy number changes with benign or unknown clinical significance has made interpretation problematic. Submicroscopic duplication of Xp22.31 has been reported as either a possible cause of intellectual disability and/or developmental delay or a benign variant. Here we report 29 individuals with the microduplication found as part of microarray analysis of 7793 samples submitted to an international group of 13 clinical laboratories. The referral reasons varied and included developmental delay, intellectual disability, autism, dysmorphic features and/or multiple congenital anomalies. The size of the Xp22.31 duplication varied between 149 kb and 1.74 Mb and included the steroid sulfatase (STS) gene with the male to female ratio of 0.7. Duplication within this segment is seen at a frequency of 0.15% in a healthy control population, whereas a frequency of 0.37% was observed in our cohort of individuals with abnormal phenotypes. We present a detailed comparison of the breakpoints, inheritance, X-inactivation and clinical phenotype in our cohort and a review of the literature for a total of 41 patients. To date, this report is the largest compilation of clinical and array data regarding the microduplication of Xp22.31 and will serve to broaden the knowledge of regions involving copy number variation (CNV).

Collaboration


Dive into the Laura K. Conlin's collaboration.

Top Co-Authors

Avatar

Nancy B. Spinner

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Ian D. Krantz

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Elaine H. Zackai

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Deardorff

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Dulik

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Alisha Wilkens

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Sawona Biswas

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Surabhi Mulchandani

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Kosuke Izumi

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Hakon Hakonarson

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge