Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura K. Mackay is active.

Publication


Featured researches published by Laura K. Mackay.


Nature Immunology | 2013

The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin

Laura K. Mackay; Azad Rahimpour; Joel Z. Ma; Nicholas Collins; Angus T. Stock; Ming-Li Hafon; Javier Vega-Ramos; Pilar Lauzurica; Scott N. Mueller; Tijana Stefanovic; David C. Tscharke; William R. Heath; Michael Inouye; Francis R. Carbone; Thomas Gebhardt

Tissue-resident memory T cells (TRM cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103+CD8+ TRM cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into TRM cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.


Nature | 2011

Different patterns of peripheral migration by memory CD4+ and CD8+ T cells

Thomas Gebhardt; Paul G. Whitney; Ali Zaid; Laura K. Mackay; Andrew G. Brooks; William R. Heath; Francis R. Carbone; Scott N. Mueller

Infections localized to peripheral tissues such as the skin result in the priming of T-cell responses that act to control pathogens. Activated T cells undergo migrational imprinting within the draining lymph nodes, resulting in memory T cells that provide local and systemic protection. Combinations of migrating and resident memory T cells have been implicated in long-term peripheral immunity, especially at the surfaces that form pathogen entry points into the body. However, T-cell immunity consists of separate CD4+ helper T cells and CD8+ killer T cells, with distinct effector and memory programming requirements. Whether these subsets also differ in their ability to form a migrating pool involved in peripheral immunosurveillance or a separate resident population responsible for local infection control has not been explored. Here, using mice, we show key differences in the migration and tissue localization of memory CD4+ and CD8+ T cells following infection of the skin by herpes simplex virus. On resolution of infection, the skin contained two distinct virus-specific memory subsets; a slow-moving population of sequestered CD8+ T cells that were resident in the epidermis and confined largely to the original site of infection, and a dynamic population of CD4+ T cells that trafficked rapidly through the dermis as part of a wider recirculation pattern. Unique homing-molecule expression by recirculating CD4+ T effector-memory cells mirrored their preferential skin-migratory capacity. Overall, these results identify a complexity in memory T-cell migration, illuminating previously unappreciated differences between the CD4+ and CD8+ subsets.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation

Laura K. Mackay; Angus T. Stock; Joel Z. Ma; Claerwen M. Jones; Stephen J. Kent; Scott N. Mueller; William R. Heath; Francis R. Carbone; Thomas Gebhardt

Although circulating memory T cells provide enhanced protection against pathogen challenge, they often fail to do so if infection is localized to peripheral or extralymphoid compartments. In those cases, it is T cells already resident at the site of virus challenge that offer superior immune protection. These tissue-resident memory T (TRM) cells are identified by their expression of the α-chain from the integrin αE(CD103)β7, and can exist in disequilibrium with the blood, remaining in the local environment long after peripheral infections subside. In this study, we demonstrate that long-lived intraepithelial CD103+CD8+ TRM cells can be generated in the absence of in situ antigen recognition. Local inflammation in skin and mucosa alone resulted in enhanced recruitment of effector populations and their conversion to the TRM phenotype. The CD8+ TRM cells lodged in these barrier tissues provided long-lived protection against local challenge with herpes simplex virus in skin and vagina challenge models, and were clearly superior to the circulating memory T-cell cohort. The results demonstrate that peripheral TRM cells can be generated and survive in the absence of local antigen presentation and provide a powerful means of achieving immune protection against peripheral infection.


Nature Reviews Immunology | 2016

Tissue-resident memory T cells: local specialists in immune defence

Scott N. Mueller; Laura K. Mackay

T cells have crucial roles in protection against infection and cancer. Although the trafficking of memory T cells around the body is integral to their capacity to provide immune protection, studies have shown that specialization of some memory T cells into unique tissue-resident subsets gives the host enhanced regional immunity. In recent years, there has been considerable progress in our understanding of tissue-resident T cell development and function, revealing mechanisms for enhanced protective immunity that have the potential to influence rational vaccine design. This Review discusses the major advances and the emerging concepts in this field, summarizes what is known about the differentiation and the protective functions of tissue-resident memory T cells in different tissues in the body and highlights key unanswered questions.


Science | 2016

Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes

Laura K. Mackay; Martina Minnich; Natasja A. M. Kragten; Yang Liao; Benjamin Nota; Cyril Seillet; Ali Zaid; Kevin Man; Simon Preston; David Freestone; Asolina Braun; Erica Wynne-Jones; Felix M. Behr; Regina Stark; Daniel G. Pellicci; Dale I. Godfrey; Gabrielle T. Belz; Marc Pellegrini; Thomas Gebhardt; Meinrad Busslinger; Wei Shi; Francis R. Carbone; René A. W. van Lier; Axel Kallies; Klaas P. J. M. van Gisbergen

Transcription factors define tissue T cells The immune system fights microbial invaders by maintaining multiple lines of defense. For instance, specialized memory T cells [resident memory T cells (Trms)] colonize portals of pathogen entry, such as the skin, lung, and gut, to quickly halt reinfections. Mackay et al. now report that in mice, Trms as well as other tissue-dwelling lymphocyte populations such as natural killer cells share a common transcriptional program driven by the related transcription factors Hobit and Blimp1. Tissue residency and retention of lymphocytes require expression of Hobit and Blimp1, which, among other functions, suppress genes that promote tissue exit. Science, this issue p. 459 Tissue-dwelling lymphocyte populations share a common transcriptional signature. Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.


Journal of Immunology | 2015

Cutting Edge: CD69 Interference with Sphingosine-1-Phosphate Receptor Function Regulates Peripheral T Cell Retention

Laura K. Mackay; Asolina Braun; Bethany L. Macleod; Nicholas Collins; Christina Tebartz; Sammy Bedoui; Francis R. Carbone; Thomas Gebhardt

Tissue-resident memory T cells provide local immune protection in barrier tissues, such as skin and mucosa. However, the molecular mechanisms controlling effector T cell retention and subsequent memory formation in those locations are not fully understood. In this study, we analyzed the role of CD69, an early leukocyte activation marker, in regulating effector T cell egress from peripheral tissues. We provide evidence that CD69 surface expression by skin-infiltrating CD8 T cells can be regulated at multiple levels, including local Ag stimulation and signaling through type I IFNRs, and it coincides with the transcriptional downregulation of the sphingosine-1-phosphate receptor S1P1. Importantly, we demonstrate that expression of CD69, by interfering with sphingosine-1-phosphate receptor function, is a critical determinant of prolonged T cell retention and local memory formation. Our results define an important step in the generation of long-lived adaptive immune memory at body surfaces.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Persistence of skin-resident memory T cells within an epidermal niche.

Ali Zaid; Laura K. Mackay; Azad Rahimpour; Asolina Braun; Marc Veldhoen; Francis R. Carbone; Jonathan H. Manton; William R. Heath; Scott N. Mueller

Significance Tissue-resident memory T cells (TRM) form in the skin where they are retained and can protect against subsequent infection. Using a combination of intravital imaging and mathematical modeling of skin TRM that form after cutaneous herpes simplex virus 1 infection, we reveal that these memory T cells persist at the site of infection for the life of a mouse owing to slow random migration. We also report that TRM compete with dendritic epidermal γδ T cells in skin for local survival signals, suggesting that T cells compete for space within an epidermal niche. Barrier tissues such as the skin contain various populations of immune cells that contribute to protection from infections. These include recently identified tissue-resident memory T cells (TRM). In the skin, these memory CD8+ T cells reside in the epidermis after being recruited to this site by infection or inflammation. In this study, we demonstrate prolonged persistence of epidermal TRM preferentially at the site of prior infection despite sustained migration. Computational simulation of TRM migration within the skin over long periods revealed that the slow rate of random migration effectively constrains these memory cells within the region of skin in which they form. Notably, formation of TRM involved a concomitant local reduction in dendritic epidermal γδ T-cell numbers in the epidermis, indicating that these populations persist in mutual exclusion and may compete for local survival signals. Accordingly, we show that expression of the aryl hydrocarbon receptor, a transcription factor important for dendritic epidermal γδ T-cell maintenance in skin, also contributes to the persistence of skin TRM. Together, these data suggest that skin tissue-resident memory T cells persist within a tightly regulated epidermal T-cell niche.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display

Carol S. Leung; Tracey A. Haigh; Laura K. Mackay; Alan B. Rickinson; Graham S. Taylor

Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein–Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4+ T cell epitopes. Using CD4+ T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1’s nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.


Frontiers in Immunology | 2012

Local immunity by tissue-resident CD8+ memory T cells

Thomas Gebhardt; Laura K. Mackay

Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM) in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.


Nature Immunology | 2016

A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage

Hui-Fern Koay; Nicholas A. Gherardin; Anselm Enders; Liyen Loh; Laura K. Mackay; Catarina F Almeida; Brendan E. Russ; Claudia A. Nold-Petry; Marcel F. Nold; Sammy Bedoui; Zhenjun Chen; Alexandra J. Corbett; Sidonia B. G. Eckle; Bronwyn Meehan; Yves d'Udekem; Igor E. Konstantinov; Martha Lappas; Ligong Liu; Christopher C. Goodnow; David P. Fairlie; Jamie Rossjohn; Mark M. W. Chong; Katherine Kedzierska; Stuart P. Berzins; Gabrielle T. Belz; James McCluskey; Adam P. Uldrich; Dale I. Godfrey; Daniel G. Pellicci

Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.

Collaboration


Dive into the Laura K. Mackay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Zaid

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Kallies

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge