Laura Kaliniene
Vilnius University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Kaliniene.
Journal of Bacteriology | 2004
Bernd Tiemann; Reinhard Depping; Egle Gineikiene; Laura Kaliniene; Rimas Nivinskas; Wolfgang Rüger
Bacteriophage T4 encodes three ADP-ribosyltransferases, Alt, ModA, and ModB. These enzymes participate in the regulation of the T4 replication cycle by ADP-ribosylating a defined set of host proteins. In order to obtain a better understanding of the phage-host interactions and their consequences for regulating the T4 replication cycle, we studied cloning, overexpression, and characterization of purified ModA and ModB enzymes. Site-directed mutagenesis confirmed that amino acids, as deduced from secondary structure alignments, are indeed decisive for the activity of the enzymes, implying that the transfer reaction follows the Sn1-type reaction scheme proposed for this class of enzymes. In vitro transcription assays performed with Alt- and ModA-modified RNA polymerases demonstrated that the Alt-ribosylated polymerase enhances transcription from T4 early promoters on a T4 DNA template, whereas the transcriptional activity of ModA-modified polymerase, without the participation of T4-encoded auxiliary proteins for middle mode or late transcription, is reduced. The results presented here support the conclusion that ADP-ribosylation of RNA polymerase and of other host proteins allows initial phage-directed mRNA synthesis reactions to escape from host control. In contrast, subsequent modification of the other cellular target proteins limits transcription from phage early genes and participates in redirecting transcription to phage middle and late genes.
Archives of Virology | 2010
Laura Kaliniene; Vytautas Klausa; Lidija Truncaite
Bacteriophages vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20, showing an unusual low-temperature plating profile and producing constantly growing plaques, were isolated from aquatic environments of Lithuania. Although vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20 resembled phage T4 both in their genome size and in their major structural protein (gp23) pattern, physiological properties of all three phages tested differed significantly from those of T4. With an optimum temperature for plating around 24°C and a high efficiency of plating in the range 7–30°C, bacteriophages vB_EcoM-VR7 and vB_EcoM-VR20 failed to plate at 37°C, whereas phage vB_EcoM-VR5 could not be plated at 40°C. Sequence analysis of diagnostic g23 PCR products revealed that g23 of vB_EcoM-VR5, vB_EcoM-VR7 and vB_EcoM-VR20 differed from the corresponding T4 g23 DNA sequence by 21, 21 and 20%, respectively.
Journal of Virology | 2012
Eugenijus Šimoliūnas; Laura Kaliniene; Lidija Truncaite; Vytautas Klausa; Aurelija Zajančkauskaite; Rolandas Meškys
ABSTRACT Despite the fact that multidrug-resistant Klebsiella sp. strains emerge rapidly (Xu J, et al., Adv. Mater. Res. 268-270:1954-1956, 2011) and bacteriophages have been reported to be useful in controlling these bacteria (Kumari S, Harjai K, Chhibber S, J. Med. Microbiol. 60:205-210, 2011), the complete genome sequences of only five Klebsiella phages (four siphoviruses and one myovirus) can be found in databases. In this paper, we report on the complete genome sequence of Klebsiella sp.-infecting bacteriophage vB_KleM_RaK2. With a genome size of 345,809 bp, this is the second largest myovirus and the largest Klebsiella phage sequenced to date. This phage differs substantially from other myoviruses since 411 out of 534 vB_KleM_RaK2 open reading frames have no known functions and lack any reliable database matches. Comparative analysis of the genome sequence of vB_KleM_RaK2 suggests that this phage forms a distinct phylogenetic branch within the family Myoviridae of tailed bacteriophages.
Journal of Virology | 2017
Laura Kaliniene; Eugenijus Šimoliūnas; Lidija Truncaitė; Aurelija Zajančkauskaitė; Juozas Nainys; Algirdas Kaupinis; Mindaugas Valius; Rolandas Meškys
ABSTRACT This is the first report on a myophage that infects Arthrobacter. A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order Caudovirales. IMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such “chimeric” myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.
Viruses | 2015
Eugenijus Šimoliūnas; Monika Vilkaitytė; Laura Kaliniene; Aurelija Zajančkauskaitė; Algirdas Kaupinis; Juozas Staniulis; Mindaugas Valius; Rolandas Meškys; Lidija Truncaitė
Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.
Viruses | 2018
Eugenijus Šimoliūnas; Monika Šimoliūnienė; Laura Kaliniene; Aurelija Zajančkauskaitė; Martynas Skapas; Rolandas Meškys; Algirdas Kaupinis; Mindaugas Valius; Lidija Truncaitė
A novel low-temperature siphovirus, vB_PagS_Vid5 (Vid5), was isolated in Lithuania using Pantoea agglomerans isolate for the phage propagation. The 61,437 bp genome of Vid5 has a G–C content of 48.8% and contains 99 probable protein encoding genes and one gene for tRNASer. A comparative sequence analysis revealed that 46 out of 99 Vid5 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 33 Vid5 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a cluster of genes possibly involved in the biosynthesis of 7-deazaguanine derivatives was identified. Notably, one of these genes encodes a putative preQ0/preQ1 transporter, which has never been detected in bacteriophages to date. A proteomic analysis led to the experimental identification of 11 virion proteins, including nine that were predicted by bioinformatics approaches. Based on the phylogenetic analysis, Vid5 cannot be assigned to any genus currently recognized by ICTV, and may represent a new one within the family of Siphoviridae.
Archives of Virology | 2012
Lidija Truncaite; Eugenijus Šimoliūnas; Aurelija Zajančkauskaite; Laura Kaliniene; Roma Mankevičiūte; Juozas Staniulis; Vytautas Klausa; Rolandas Meškys
Archives of Virology | 2011
Laura Kaliniene; Vytautas Klausa; Aurelija Zajančkauskaite; Rimas Nivinskas; Lidija Truncaite
Archives of Virology | 2015
Laura Kaliniene; Aurelija Zajančkauskaitė; Eugenijus Šimoliūnas; Lidija Truncaitė; Rolandas Meškys
Genome Announcements | 2017
Laurynas Alijošius; Eugenijus Šimoliūnas; Laura Kaliniene; Rolandas Meškys; Lidija Truncaitė