Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura L. Lackner is active.

Publication


Featured researches published by Laura L. Lackner.


Science | 2011

ER Tubules Mark Sites of Mitochondrial Division

Jonathan R. Friedman; Laura L. Lackner; Matthew West; Jared R. DiBenedetto; Jodi Nunnari; Gia K. Voeltz

Mitochondrial division occurs at positions where endoplasmic reticulum tubules contact mitochondria and mediate constriction. Mitochondrial structure and distribution are regulated by division and fusion events. Mitochondrial division is regulated by Dnm1/Drp1, a dynamin-related protein that forms helices around mitochondria to mediate fission. Little is known about what determines sites of mitochondrial fission within the mitochondrial network. The endoplasmic reticulum (ER) and mitochondria exhibit tightly coupled dynamics and have extensive contacts. We tested whether ER plays a role in mitochondrial division. We found that mitochondrial division occurred at positions where ER tubules contacted mitochondria and mediated constriction before Drp1 recruitment. Thus, ER tubules may play an active role in defining the position of mitochondrial division sites.


Journal of Cell Biology | 2011

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria

Suzanne Hoppins; Sean R. Collins; Ann Cassidy-Stone; Eric Hummel; Rachel M. DeVay; Laura L. Lackner; Benedikt Westermann; Maya Schuldiner; Jonathan S. Weissman; Jodi Nunnari

Statement MITO-MAP, a high-density genetic interaction map in budding yeast, identifies a mitochondrial inner membrane–associated complex that promotes normal mitochondrial membrane organization and morphology.


Nature Structural & Molecular Biology | 2011

Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission

Jason A. Mears; Laura L. Lackner; Shunming Fang; Elena Ingerman; Jodi Nunnari; Jenny E. Hinshaw

Mitochondria are dynamic organelles that undergo cycles of fission and fusion. The yeast dynamin-related protein Dnm1 has been localized to sites of mitochondrial division. Using cryo-EM, we have determined the three-dimensional (3D) structure of Dnm1 in a GTP-bound state. The 3D map showed that Dnm1 adopted a unique helical assembly when compared with dynamin, which is involved in vesicle scission during endocytosis. Upon GTP hydrolysis, Dnm1 constricted liposomes and subsequently dissociated from the lipid bilayer. The magnitude of Dnm1 constriction was substantially larger than the decrease in diameter previously reported for dynamin. We postulate that the larger conformational change is mediated by a flexible Dnm1 structure that has limited interaction with the underlying bilayer. Our structural studies support the idea that Dnm1 has a mechanochemical role during mitochondrial division.


Journal of Cell Biology | 2009

Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion

Rachel M. DeVay; Lenin Domínguez-Ramírez; Laura L. Lackner; Suzanne Hoppins; Henning Stahlberg; Jodi Nunnari

The soluble and membrane-anchored isoforms of Mgm1 are only active when they work together (in trans).


eLife | 2013

ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast

Andrew Murley; Laura L. Lackner; Christof Osman; Matthew West; Gia K. Voeltz; Peter Walter; Jodi Nunnari

Mitochondrial division is important for mitochondrial distribution and function. Recent data have demonstrated that ER–mitochondria contacts mark mitochondrial division sites, but the molecular basis and functions of these contacts are not understood. Here we show that in yeast, the ER–mitochondria tethering complex, ERMES, and the highly conserved Miro GTPase, Gem1, are spatially and functionally linked to ER-associated mitochondrial division. Gem1 acts as a negative regulator of ER–mitochondria contacts, an activity required for the spatial resolution and distribution of newly generated mitochondrial tips following division. Previous data have demonstrated that ERMES localizes with a subset of actively replicating mitochondrial nucleoids. We show that mitochondrial division is spatially linked to nucleoids and that a majority of these nucleoids segregate prior to division, resulting in their distribution into newly generated tips in the mitochondrial network. Thus, we postulate that ER-associated division serves to link the distribution of mitochondria and mitochondrial nucleoids in cells. DOI: http://dx.doi.org/10.7554/eLife.00422.001


Journal of Bacteriology | 2003

ATP-Dependent Interactions between Escherichia coli Min Proteins and the Phospholipid Membrane In Vitro

Laura L. Lackner; David M. Raskin; Piet A. J. de Boer

Proper placement of the division apparatus in Escherichia coli requires pole-to-pole oscillation of the MinC division inhibitor. MinC dynamics involves a membrane association-dissociation cycle that is driven by the activities of the MinD ATPase and the MinE topological specificity factor, which themselves undergo coupled oscillatory localization cycles. To understand the biochemical mechanisms underlying Min protein dynamics, we studied the interactions of purified Min proteins with phospholipid vesicles and the role of ATP in these interactions. We show that (i) the ATP-bound form of MinD (MinD.ATP) readily associates with phospholipid vesicles in the presence of Mg(2+), whereas the ADP-bound form (MinD.ADP) does not; (ii) MinD.ATP binds membrane in a self-enhancing fashion; (iii) both MinC and MinE can be recruited to MinD.ATP-decorated vesicles; (iv) MinE stimulates dissociation of MinD.ATP from the membrane in a process requiring hydrolysis of the nucleotide; and (v) MinE stimulates dissociation of MinC from MinD.ATP-membrane complexes, even when ATP hydrolysis is blocked. The results support and extend recent work by Z. Hu et al. (Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Natl. Acad. Sci. USA 99:6761-6766, 2002) and support models of protein oscillation wherein MinE induces Min protein dynamics by stimulating the conversion of the membrane-bound form of MinD (MinD.ATP) to the cytoplasmic form (MinD.ADP). The results also indicate that MinE-stimulated dissociation of MinC from the MinC-MinD.ATP-membrane complex can, and may, occur prior to hydrolysis of the nucleotide.


Biochimica et Biophysica Acta | 2009

The molecular mechanism and cellular functions of mitochondrial division.

Laura L. Lackner; Jodi Nunnari

Mitochondria are highly dynamic organelles that continuously divide and fuse. These dynamic processes regulate the size, shape, and distribution of the mitochondrial network. In addition, mitochondrial division and fusion play critical roles in cell physiology. This review will focus on the dynamic process of mitochondrial division, which is highly conserved from yeast to humans. We will discuss what is known about how the essential components of the division machinery function to mediate mitochondrial division and then focus on proteins that have been implicated in division but whose functions remain unclear. We will then briefly discuss the cellular functions of mitochondrial division and the problems that arise when division is disrupted.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Endoplasmic reticulum-associated mitochondria–cortex tether functions in the distribution and inheritance of mitochondria

Laura L. Lackner; Holly A. Ping; Martin Graef; Andrew Murley; Jodi Nunnari

To elucidate the functional roles of mitochondrial dynamics in vivo, we identified genes that become essential in cells lacking the dynamin-related proteins Fzo1 and Dnm1, which are required for mitochondrial fusion and division, respectively. The screen identified Num1, a cortical protein implicated in mitochondrial division and distribution that also functions in nuclear migration. Our data indicate that Num1, together with Mdm36, forms a physical tether that robustly anchors mitochondria to the cell cortex but plays no direct role in mitochondrial division. Our analysis indicates that Num1-dependent anchoring is essential for distribution of the static mitochondrial network in fzo1 dnm1 cells. Consistently, expression of a synthetic mitochondria–cortex tether rescues the viability of fzo1 dnm1 num1 cells. We find that the cortical endoplasmic reticulum (ER) also is a constituent of the Num1 mitochondria–cortex tether, suggesting an active role for the ER in mitochondrial positioning in cells. Thus, taken together, our findings identify Num1 as a key component of a mitochondria–ER–cortex anchor, which we termed “MECA,” that functions in parallel with mitochondrial dynamics to distribute and position the essential mitochondrial network.


Journal of Bacteriology | 2002

Targeting of DMinC/MinD and DMinC/DicB Complexes to Septal Rings in Escherichia coli Suggests a Multistep Mechanism for MinC-Mediated Destruction of Nascent FtsZ Rings

Jay E. Johnson; Laura L. Lackner; Piet A. J. de Boer

The MinC protein is an important determinant of septal ring positioning in Escherichia coli. The N-terminal domain ((Z)MinC) suppresses septal ring formation by interfering with FtsZ polymerization, whereas the C-terminal domain ((D)MinC) is required for dimerization as well as for interaction with the MinD protein. MinD oscillates between the membrane of both cell halves in a MinE-dependent fashion. MinC oscillates along with MinD such that the time-integrated concentration of (Z)MinC at the membrane is minimal, and hence the stability of FtsZ polymers is maximal, at the cell center. MinC is cytoplasmic and fails to block FtsZ assembly in the absence of MinD, indicating that recruitment of MinC by MinD to the membrane enhances (Z)MinC function. Here, we present evidence that the binding of (D)MinC to MinD endows the MinC/MinD complex with a more specific affinity for a septal ring-associated target in vivo. Thus, MinD does not merely attract MinC to the membrane but also aids MinC in specifically binding to, or in close proximity to, the substrate of its (Z)MinC domain. MinC-mediated division inhibition can also be activated in a MinD-independent fashion by the DicB protein of cryptic prophage Kim. DicB shows little homology to MinD, and how it stimulates MinC function has been unclear. Similar to the results obtained with MinD, we find that DicB interacts directly with (D)MinC, that the (D)MinC/DicB complex has a high affinity for some septal ring target(s), and that MinC/DicB interferes with the assembly and/or integrity of FtsZ rings in vivo. The results suggest a multistep mechanism for the activation of MinC-mediated division inhibition by either MinD or DicB and further expand the number of properties that can be ascribed to the Min proteins.


Chemistry & Biology | 2010

Small Molecule Inhibitors of Mitochondrial Division: Tools that Translate Basic Biological Research into Medicine

Laura L. Lackner; Jodi Nunnari

Mitochondria do not exist as discrete static entities; rather, mitochondria form a network that continuously moves, divides, and fuses. The structure of this dynamic network is in part maintained by a balance of division and fusion events (Hoppins et al., 2007). The ratio of division to fusion events that defines a proper balance is not universal but varies with developmental stage, cell type, and biological circumstances. This is evident throughout the cell cycle in higher eukaryotes, where mitochondria elongate during the G1/S transition and fragment at the onset of mitosis, and when mitochondria fragment in response to certain cellular stimuli, such as increases in cytosolic calcium levels (Breckenridge et al., 2003; Cereghetti et al., 2008; Han et al., 2008; Mitra et al., 2009; Taguchi et al., 2007). The functional state and distribution of mitochondria are clearly influenced by its steady-state structure. When the normal balance of division and fusion is disrupted as a consequence of the inappropriate stimulation or inhibition of either process, problems arise at the cellular level that compromises the well-being of the organism as a whole. This is evident by the ever-increasing number of diseases in which abnormal mitochondrial dynamics have been etiologically implicated. In this context, the mitochondrial division and fusion machines are valuable and interesting targets of small molecule effectors, as inhibition or activation of these processes may be able to restore the proper dynamic balance and function. A small molecule inhibitor of mitochondrial division, mdivi-1, has already been identified and characterized (Cassidy-Stone et al., 2008). This inhibitor has provided valuable insight into the mechanism of mitochondrial division and has shown great therapeutic promise in a wide array of disease models. This review will focus on small molecule effectors of mitochondrial division, discussing their value in basic biological research as well as their therapeutic potential.

Collaboration


Dive into the Laura L. Lackner's collaboration.

Top Co-Authors

Avatar

Jodi Nunnari

University of California

View shared research outputs
Top Co-Authors

Avatar

Gia K. Voeltz

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew West

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Piet A. J. de Boer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Andrew Murley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge