Laura L. Lee
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura L. Lee.
Applied and Environmental Microbiology | 2015
Jeffrey V. Zurawski; Jonathan M. Conway; Laura L. Lee; Hunter J. Simpson; Javier A. Izquierdo; Sara E. Blumer-Schuette; Intawat Nookaew; Michael W. W. Adams; Robert M. Kelly
ABSTRACT Microbiological, genomic and transcriptomic analyses were used to examine three species from the bacterial genus Caldicellulosiruptor with respect to their capacity to convert the carbohydrate content of lignocellulosic biomass at 70°C to simple sugars, acetate, lactate, CO2, and H2. Caldicellulosiruptor bescii, C. kronotskyensis, and C. saccharolyticus solubilized 38%, 36%, and 29% (by weight) of unpretreated switchgrass (Panicum virgatum) (5 g/liter), respectively, which was about half of the amount of crystalline cellulose (Avicel; 5 g/liter) that was solubilized under the same conditions. The lower yields with C. saccharolyticus, not appreciably greater than the thermal control for switchgrass, were unexpected, given that its genome encodes the same glycoside hydrolase 9 (GH9)-GH48 multidomain cellulase (CelA) found in the other two species. However, the genome of C. saccharolyticus lacks two other cellulases with GH48 domains, which could be responsible for its lower levels of solubilization. Transcriptomes for growth of each species comparing cellulose to switchgrass showed that many carbohydrate ABC transporters and multidomain extracellular glycoside hydrolases were differentially regulated, reflecting the heterogeneity of lignocellulose. However, significant differences in transcription levels for conserved genes among the three species were noted, indicating unexpectedly diverse regulatory strategies for deconstruction for these closely related bacteria. Genes encoding the Che-type chemotaxis system and flagellum biosynthesis were upregulated in C. kronotskyensis and C. bescii during growth on cellulose, implicating motility in substrate utilization. The results here show that capacity for plant biomass deconstruction varies across Caldicellulosiruptor species and depends in a complex way on GH genome inventory, substrate composition, and gene regulation.
Journal of Biological Chemistry | 2016
Jonathan M. Conway; William S. Pierce; Jaycee H. Le; George W. Harper; John H. Wright; Allyson L. Tucker; Jeffrey V. Zurawski; Laura L. Lee; Sara E. Blumer-Schuette; Robert M. Kelly
The genome of the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensis encodes 19 surface layer (S-layer) homology (SLH) domain-containing proteins, the most in any Caldicellulosiruptor species genome sequenced to date. These SLH proteins include five glycoside hydrolases (GHs) and one polysaccharide lyase, the genes for which were transcribed at high levels during growth on plant biomass. The largest GH identified so far in this genus, Calkro_0111 (2,435 amino acids), is completely unique to C. kronotskyensis and contains SLH domains. Calkro_0111 was produced recombinantly in Escherichia coli as two pieces, containing the GH16 and GH55 domains, respectively, as well as putative binding and spacer domains. These displayed endo- and exoglucanase activity on the β-1,3-1,6-glucan laminarin. A series of additional truncation mutants of Calkro_0111 revealed the essential architectural features required for catalytic function. Calkro_0402, another of the SLH domain GHs in C. kronotskyensis, when produced in E. coli, was active on a variety of xylans and β-glucans. Unlike Calkro_0111, Calkro_0402 is highly conserved in the genus Caldicellulosiruptor and among other biomass-degrading Firmicutes but missing from Caldicellulosiruptor bescii. As such, the gene encoding Calkro_0402 was inserted into the C. bescii genome, creating a mutant strain with its S-layer extensively decorated with Calkro_0402. This strain consequently degraded xylans more extensively than wild-type C. bescii. The results here provide new insights into the architecture and role of SLH domain GHs and demonstrate that hemicellulose degradation can be enhanced through non-native SLH domain GHs engineered into the genomes of Caldicellulosiruptor species.
Journal of Biological Chemistry | 2015
Sara E. Blumer-Schuette; Markus Alahuhta; Jonathan M. Conway; Laura L. Lee; Jeffrey V. Zurawski; Richard J. Giannone; Robert L. Hettich; Vladimir V. Lunin; Michael E. Himmel; Robert M. Kelly
Background: Lignocellulose-degrading microorganisms utilize binding modules associated with glycosidic enzymes to attach to polysaccharides. Results: Structurally unique, discrete proteins (tāpirins) bind to cellulose with a high affinity. Conclusion: Tāpirins represent a new class of proteins used by Caldicellulosiruptor species to attach to cellulose. Significance: The tāpirins establish a new paradigm for how cellulolytic bacteria adhere to cellulose. A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins (“tāpirins,” origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2017
James A. Counts; Benjamin M. Zeldes; Laura L. Lee; Christopher T. Straub; Michael W. W. Adams; Robert M. Kelly
The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms that grow optimally at temperatures of 75°C and above are usually referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs—basically, anywhere there is hot water. Initial efforts to study extreme thermophiles faced challenges with their isolation from difficult to access locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermophiles were among the first organisms to be sequenced, thereby opening up the application of systems biology‐based methods to probe their unique physiological, metabolic and biotechnological features. The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The recent emergence of genetic tools for many of these organisms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. WIREs Syst Biol Med 2017, 9:e1377. doi: 10.1002/wsbm.1377
Applied and Environmental Microbiology | 2017
Amanda M. Williams-Rhaesa; Farris L. Poole; Jessica T. Dinsmore; Gina L. Lipscomb; Gabriel M. Rubinstein; Israel M. Scott; Jonathan M. Conway; Laura L. Lee; Piyum A. Khatibi; Robert M. Kelly; Michael W. W. Adams
ABSTRACT Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii. Furthermore, a facile approach for assessing genomic stability in C. bescii has been established. IMPORTANCE Caldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.
Genome Announcements | 2015
Laura L. Lee; Javier A. Izquierdo; Sara E. Blumer-Schuette; Jeffrey V. Zurawski; Jonathan M. Conway; Robert W. Cottingham; Marcel Huntemann; Alex Copeland; I-Min A. Chen; Nikos C. Kyrpides; Victor Markowitz; Krishnaveni Palaniappan; Natalia Ivanova; Natalia Mikhailova; Galina Ovchinnikova; Evan Andersen; Amrita Pati; Dimitrios Stamatis; T. B. K. Reddy; Nicole Shapiro; Henrik P. Nordberg; Michael N. Cantor; Susan X. Hua; Tanja Woyke; Robert M. Kelly
ABSTRACT The genus Caldicellulosiruptor contains extremely thermophilic, cellulolytic bacteria capable of lignocellulose deconstruction. Currently, complete genome sequences for eleven Caldicellulosiruptor species are available. Here, we report genome sequences for three additional Caldicellulosiruptor species: Rt8.B8 DSM 8990 (New Zealand), Wai35.B1 DSM 8977 (New Zealand), and “Thermoanaerobacter cellulolyticus” strain NA10 DSM 8991 (Japan).
Applied and Environmental Microbiology | 2017
Jeffrey V. Zurawski; Piyum A. Khatibi; Hannah Akinosho; Christopher T. Straub; Scott H. Compton; Jonathan M. Conway; Laura L. Lee; Arthur J. Ragauskas; Brian H. Davison; Michael W. W. Adams; Robert M. Kelly
ABSTRACT Improving access to the carbohydrate content of lignocellulose is key to reducing recalcitrance for microbial deconstruction and conversion to fuels and chemicals. Caldicellulosiruptor bescii completely solubilizes naked microcrystalline cellulose, yet this transformation is impeded within the context of the plant cell wall by a network of lignin and hemicellulose. Here, the bioavailability of carbohydrates to C. bescii at 70°C was examined for reduced lignin transgenic switchgrass lines COMT3(+) and MYB Trans, their corresponding parental lines (cultivar Alamo) COMT3(−) and MYB wild type (WT), and the natural variant cultivar Cave-in-Rock (CR). Transgenic modification improved carbohydrate solubilization by C. bescii to 15% (2.3-fold) for MYB and to 36% (1.5-fold) for COMT, comparable to the levels achieved for the natural variant, CR (36%). Carbohydrate solubilization was nearly doubled after two consecutive microbial fermentations compared to one microbial step, but it never exceeded 50% overall. Hydrothermal treatment (180°C) prior to microbial steps improved solubilization 3.7-fold for the most recalcitrant line (MYB WT) and increased carbohydrate recovery to nearly 50% for the least recalcitrant lines [COMT3(+) and CR]. Alternating microbial and hydrothermal steps (T→M→T→M) further increased bioavailability, achieving carbohydrate solubilization ranging from 50% for MYB WT to above 70% for COMT3(+) and CR. Incomplete carbohydrate solubilization suggests that cellulose in the highly lignified residue was inaccessible; indeed, residue from the T→M→T→M treatment was primarily glucan and inert materials (lignin and ash). While C. bescii could significantly solubilize the transgenic switchgrass lines and natural variant tested here, additional or alternative strategies (physical, chemical, enzymatic, and/or genetic) are needed to eliminate recalcitrance. IMPORTANCE Key to a microbial process for solubilization of plant biomass is the organisms access to the carbohydrate content of lignocellulose. Economically viable routes will characteristically minimize physical, chemical, and biological pretreatment such that microbial steps contribute to the greatest extent possible. Recently, transgenic versions of plants and trees have been developed with the intention of lowering the barrier to lignocellulose conversion, with particular focus on lignin content and composition. Here, the extremely thermophilic bacterium Caldicellulosiruptor bescii was used to solubilize natural and genetically modified switchgrass lines, with and without the aid of hydrothermal treatment. For lignocellulose conversion, it is clear that the microorganism, plant biomass substrate, and processing steps must all be considered simultaneously to achieve optimal results. Whether switchgrass lines engineered for low lignin or natural variants with desirable properties are used, conversion will depend on microbial access to crystalline cellulose in the plant cell wall.
Applied and Environmental Microbiology | 2018
Laura L. Lee; Sara E. Blumer-Schuette; Javier A. Izquierdo; Jeffrey V. Zurawski; Andrew J. Loder; Jonathan M. Conway; James G. Elkins; Mircea Podar; Alicia Clum; Piet C. Jones; Marek J. Piatek; Deborah A. Weighill; Dan Jacobson; Michael W. W. Adams; Robert M. Kelly
ABSTRACT Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor. The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii. These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes. IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.
bioRxiv | 2018
Laura L. Lee; William S Hart; Vladimir V. Lunin; Markus Alahuhta; Yannick J. Bomble; Michael E. Himmel; Sara E. Blumer-Schuette; Michael W. W. Adams; Robert M. Kelly
Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, tāpirins, located proximate to the type IV pilus locus. Previously, the C-terminal domain of a tāpirin (Calkro_0844) from Caldicellulosiruptor kronotskyensis was shown to be structurally unique and have a cellulose binding affinity akin to family 3 carbohydrate binding modules (CBM3). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, filter paper, but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844 and NA10_0869 (from strongly cellulolytic species), perhaps to associate closely with biomass to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Three-dimensional structures of the C-terminal binding regions of Calhy_0908 and Calkr_0826 were closely related to Calkro_0844, despite the fact that their amino acid sequence identities compared to Calkro_0844 were only 16% and 36%, respectively. Unlike the parent strain, C. bescii mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, reinforcing the significance of these proteins in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help cells scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species. Importance Mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way Caldicellulosiruptor species interact with microcrystalline cellulose and here additional information about the diversity of these proteins across the genus is provided, including three dimensional structural comparisons.
Archive | 2016
Andrew J. Loder; Benjamin M. Zeldes; Jonathan M. Conway; James A. Counts; Christopher T. Straub; Piyum A. Khatibi; Laura L. Lee; Nicholas P. Vitko; Matthew W. Keller; Amanda M. Rhaesa; Gabe M. Rubinstein; Israel M. Scott; Gina L. Lipscomb; Michael W. W. Adams; Robert M. Kelly