Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Lebrun is active.

Publication


Featured researches published by Laura Lebrun.


PLOS ONE | 2014

Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia.

Luisa W. Hugerth; Emilie Muller; Yue O. O. Hu; Laura Lebrun; Hugo Roume; Daniel Lundin; Paul Wilmes; Anders F. Andersson

High-throughput sequencing of ribosomal RNA gene (rDNA) amplicons has opened up the door to large-scale comparative studies of microbial community structures. The short reads currently produced by massively parallel sequencing technologies make the choice of sequencing region crucial for accurate phylogenetic assignments. While for 16S rDNA, relevant regions have been well described, no truly systematic design of 18S rDNA primers aimed at resolving eukaryotic diversity has yet been reported. Here we used 31,862 18S rDNA sequences to design a set of broad-taxonomic range degenerate PCR primers. We simulated the phylogenetic information that each candidate primer pair would retrieve using paired- or single-end reads of various lengths, representing different sequencing technologies. Primer pairs targeting the V4 region performed best, allowing discrimination with paired-end reads as short as 150 bp (with 75% accuracy at genus level). The conditions for PCR amplification were optimised for one of these primer pairs and this was used to amplify 18S rDNA sequences from isolates as well as from a range of environmental samples which were then Illumina sequenced and analysed, revealing good concordance between expected and observed results. In summary, the reported primer sets will allow minimally biased assessment of eukaryotic diversity in different microbial ecosystems.


Nature Communications | 2014

Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage

Emilie Muller; Nicolás Pinel; Cédric C. Laczny; Michael R. Hoopmann; Shaman Narayanasamy; Laura Lebrun; Hugo Roume; Jake Lin; Patrick May; Nathan D. Hicks; Anna Heintz-Buschart; Linda Wampach; Cindy M. Liu; Lance B. Price; John D. Gillece; Cédric Guignard; James M. Schupp; Nikos Vlassis; Nitin S. Baliga; Robert L. Moritz; Paul Keim; Paul Wilmes

Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle strategies) relates to ecological success, we develop and apply an integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities from a biological wastewater treatment plant. Time- and space-resolved coupled metabolomic and taxonomic analyses demonstrate that the community-wide lipid accumulation phenotype is associated with the dominance of the generalist bacterium Candidatus Microthrix spp. By integrating population-level genomic reconstructions (reflecting fundamental niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned gene expression governing resource usage by Candidatus Microthrix parvicella over time. Moreover, our results indicate that the fluctuating environmental conditions constrain the accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness trade-offs. Based on our observations, niche breadth has to be considered as an important factor for understanding the evolutionary processes governing (microbial) population sizes and structures in situ.


Nature microbiology | 2016

Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.

Anna Heintz-Buschart; Patrick May; Cédric C. Laczny; Laura Lebrun; Camille Bellora; Abhimanyu Krishna; Linda Wampach; Jochen G. Schneider; Angela Hogan; Carine De Beaufort; Paul Wilmes

1 Erratum: Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes Anna Heintz-Buschart, Patrick May, Cédric C. Laczny, Laura A. Lebrun, Camille Bellora, Abhimanyu Krishna, Linda Wampach, Jochen G. Schneider, Angela Hogan, Carine de Beaufort and Paul Wilmes Nature Microbiology 2, 16180 (2016); published 10 October 2016; corrected 24 October 2016 This Article should have been published under a Creative Commons licence according to the Nature policy on publishing the primary sequence of an organism’s genome for the first time. The editors apologize to the authors and to readers for this error. The manuscript is now open access and published under a CC-BY licence. All versions of the Article have been modified accordingly. ARTICLES NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.227


npj Biofilms and Microbiomes | 2015

Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks

Hugo Roume; Anna Heintz-Buschart; Emilie Muller; Patrick May; Venkata P. Satagopam; Cédric C. Laczny; Shaman Narayanasamy; Laura Lebrun; Michael R. Hoopmann; James M. Schupp; John D. Gillece; Nathan D. Hicks; David M. Engelthaler; Thomas Sauter; Paul Keim; Robert L. Moritz; Paul Wilmes

Background:Mixed microbial communities underpin important biotechnological processes such as biological wastewater treatment (BWWT). A detailed knowledge of community structure and function relationships is essential for ultimately driving these systems towards desired outcomes, e.g., the enrichment in organisms capable of accumulating valuable resources during BWWT.Methods:A comparative integrated omic analysis including metagenomics, metatranscriptomics and metaproteomics was carried out to elucidate functional differences between seasonally distinct oleaginous mixed microbial communities (OMMCs) sampled from an anoxic BWWT tank. A computational framework for the reconstruction of community-wide metabolic networks from multi-omic data was developed. These provide an overview of the functional capabilities by incorporating gene copy, transcript and protein abundances. To identify functional genes, which have a disproportionately important role in community function, we define a high relative gene expression and a high betweenness centrality relative to node degree as gene-centric and network topological features, respectively.Results:Genes exhibiting high expression relative to gene copy abundance include genes involved in glycerolipid metabolism, particularly triacylglycerol lipase, encoded by known lipid accumulating populations, e.g., Candidatus Microthrix parvicella. Genes with a high relative gene expression and topologically important positions in the network include genes involved in nitrogen metabolism and fatty acid biosynthesis, encoded by Nitrosomonas spp. and Rhodococcus spp. Such genes may be regarded as ‘keystone genes’ as they are likely to be encoded by keystone species.Conclusion:The linking of key functionalities to community members through integrated omics opens up exciting possibilities for devising prediction and control strategies for microbial communities in the future.


The ISME Journal | 2016

In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella.

Abdul Sheik; Emilie Muller; Jean-Nicolas Audinot; Laura Lebrun; Patrick Grysan; Cédric Guignard; Paul Wilmes

Microorganisms in biological wastewater treatment plants require adaptive strategies to deal with rapidly fluctuating environmental conditions. At the population level, the filamentous bacterium Candidatus Microthrix parvicella (Ca. M. parvicella) has been found to fine-tune its gene expression for optimized substrate assimilation. Here we investigated in situ substrate assimilation by single cells of Ca. M. parvicella using nano-scale secondary-ion mass spectrometry (nanoSIMS). NanoSIMS imaging highlighted phenotypic heterogeneity among Ca. M. parvicella cells of the same filament, whereby 13C-oleic acid and 13C-glycerol-3-phosphate assimilation occurred in ≈21–55% of cells, despite non-assimilating cells being intact and alive. In response to alternating aerobic–anoxic regimes, 13C-oleic acid assimilation occurred among subpopulations of Ca. M. parvicella cells (≈3–28% of cells). Furthermore, Ca. M. parvicella cells exhibited two temperature optima for 13C-oleic acid assimilation and associated growth rates. These results suggest that phenotypic heterogeneity among Ca. M. parvicella cells allows the population to adapt rapidly to fluctuating environmental conditions facilitating its widespread occurrence in biological wastewater treatment plants.


Biopreservation and Biobanking | 2015

Method Optimization for Fecal Sample Collection and Fecal DNA Extraction

Conny Mathay; Gael Hamot; Estelle Henry; Laura Georges; Camille Bellora; Laura Lebrun; Brian de Witt; Wim Ammerlaan; Anna Buschart; Paul Wilmes; Fay Betsou

BACKGROUND This is the third in a series of publications presenting formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks. We report here optimization of a stool processing protocol validated for fitness-for-purpose in terms of downstream DNA-based analyses. METHODS Stool collection was initially optimized in terms of sample input quantity and supernatant volume using canine stool. Three DNA extraction methods (PerkinElmer MSM I®, Norgen Biotek All-In-One®, MoBio PowerMag®) and six collection container types were evaluated with human stool in terms of DNA quantity and quality, DNA yield, and its reproducibility by spectrophotometry, spectrofluorometry, and quantitative PCR, DNA purity, SPUD assay, and 16S rRNA gene sequence-based taxonomic signatures. RESULTS The optimal MSM I protocol involves a 0.2 g stool sample and 1000 μL supernatant. The MSM I extraction was superior in terms of DNA quantity and quality when compared to the other two methods tested. Optimal results were obtained with plain Sarstedt tubes (without stabilizer, requiring immediate freezing and storage at -20°C or -80°C) and Genotek tubes (with stabilizer and RT storage) in terms of DNA yields (total, human, bacterial, and double-stranded) according to spectrophotometry and spectrofluorometry, with low yield variability and good DNA purity. No inhibitors were identified at 25 ng/μL. The protocol was reproducible in terms of DNA yield among different stool aliquots. CONCLUSIONS We validated a stool collection method suitable for downstream DNA metagenomic analysis. DNA extraction with the MSM I method using Genotek tubes was considered optimal, with simple logistics in terms of collection and shipment and offers the possibility of automation. Laboratories and biobanks should ensure protocol conditions are systematically recorded in the scope of accreditation.


Frontiers in Microbiology | 2016

Identification, Recovery, and Refinement of Hitherto Undescribed Population-Level Genomes from the Human Gastrointestinal Tract

Cédric C. Laczny; Emilie Muller; Anna Heintz-Buschart; Malte Herold; Laura Lebrun; Angela Hogan; Patrick May; Carine De Beaufort; Paul Wilmes

Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference genomes. While the culture-independent recovery of population-level genomes from environmental samples using the binning of metagenomic data has expanded available reference genome catalogs, several microbial lineages remain underrepresented. Here, we present two reference-independent approaches for the identification, recovery, and refinement of hitherto undescribed population-level genomes. The first approach is aimed at genome recovery of varied taxa and involves multi-sample automated binning using CANOPY CLUSTERING complemented by visualization and human-augmented binning using VIZBIN post hoc. The second approach is particularly well-suited for the study of specific taxa and employs VIZBIN de novo. Using these approaches, we reconstructed a total of six population-level genomes of distinct and divergent representatives of the Alphaproteobacteria class, the Mollicutes class, the Clostridiales order, and the Melainabacteria class from human gastrointestinal tract-derived metagenomic data. Our results demonstrate that, while automated binning approaches provide great potential for large-scale studies of mixed microbial communities, these approaches should be complemented with informative visualizations because expert-driven inspection and refinements are critical for the recovery of high-quality population-level genomes.


Scientific Reports | 2018

Expressed protein profile of a Tectomicrobium and other microbial symbionts in the marine sponge Aplysina aerophoba as evidenced by metaproteomics

Maryam Chaib De Mares; Diego Javier Jiménez; Giorgia Palladino; Johanna Gutleben; Laura Lebrun; Emilie Muller; Paul Wilmes; Detmer Sipkema; Jan Dirk van Elsas

Aplysina aerophoba is an emerging model marine sponge, with a well-characterized microbial community in terms of diversity and structure. However, little is known about the expressed functional capabilities of its associated microbes. Here, we present the first metaproteomics-based study of the microbiome of A. aerophoba. We found that transport and degradation of halogenated and chloroaromatic compounds are common active processes in the sponge microbiomes. Our data further reveal that the highest number of proteins were affiliated to a sponge-associated Tectomicrobium, presumably from the family Entotheonellaceae, as well as to the well-known symbiont “Candidatus Synechococcus spongiarium”, suggesting a high metabolic activity of these two microorganisms in situ. Evidence for nitric oxide (NO) conversion to nitrous oxide was consistently observed for Tectomicrobia across replicates, by production of the NorQ protein. Moreover, we found a potential energy-yielding pathway through CO oxidation by putative Chloroflexi bacteria. Finally, we observed expression of enzymes that may be involved in the transformation of chitin, glycoproteins, glycolipids and glucans into smaller molecules, consistent with glycosyl hydrolases predicted from analyses of the genomes of Poribacteria sponge symbionts. Thus, this study provides crucial links between expressed proteins and specific members of the A. aerophoba microbiome.


Archive | 2018

Sequential Isolation of DNA, RNA, Protein, and Metabolite Fractions from Murine Organs and Intestinal Contents for Integrated Omics of Host–Microbiota Interactions

Pranjul Shah; Emilie Muller; Laura Lebrun; Linda Wampach; Paul Wilmes

The gastrointestinal microbiome plays a central role in health and disease. Imbalances in the microbiome, also referred to as dysbiosis, have recently been associated with a number of human idiopathic diseases ranging from metabolic to neurodegenerative. However, to causally link specific microorganisms or dysbiotic communities with tissue-specific and/or systemic disease-associated phenotypes, systematic in vivo studies are fundamental. Gnotobiotic mouse models have proven to be particularly useful for the elucidation of microbiota-associated characteristics as they provide a means to conduct targeted perturbations followed by analyses of induced localized and systemic effects. Here, we describe a methodology in the framework of systems biology which allows the comprehensive isolation of high quality biomolecular fractions (DNA, RNA, proteins and metabolites) from limited and/or heterogeneous sample material derived from murine brain, liver, and colon tissues, as well as from intestinal contents (fecal pellets and fecal masses). The obtained biomolecular fractions are compatible with current high-throughput genomic, transcriptomic, proteomic, and metabolomic analyses. The resulting data fulfills the premise of systematic measurements and allows the detailed study of tissue-specific and/or systemic effects of host-microbiota interactions in relation to health and disease.


Standards in Genomic Sciences | 2017

First draft genome sequence of a strain belonging to the Zoogloea genus and its gene expression in situ

Emilie Muller; Shaman Narayanasamy; Myriam Zeimes; Cédric C. Laczny; Laura Lebrun; Malte Herold; Nathan D. Hicks; John D. Gillece; James M. Schupp; Paul Keim; Paul Wilmes

The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater.

Collaboration


Dive into the Laura Lebrun's collaboration.

Top Co-Authors

Avatar

Paul Wilmes

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Emilie Muller

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugo Roume

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Patrick May

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda Wampach

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

James M. Schupp

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Abdul Sheik

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Carine De Beaufort

Centre Hospitalier de Luxembourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge