Laura Llobet
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Llobet.
Gene | 2014
Beatriz Tavira; Juan Gómez; Carmen Díaz-Corte; Laura Llobet; Eduardo Ruiz-Pesini; Francisco B. Ortega; Eliecer Coto
BACKGROUND AND AIMS Tacrolimus (Tac) is an immunosuppressive drug widely used to avoid organ rejection. New-onset diabetes after transplantation (NODAT) is a major complication among transplanted patients who receive Tac. The increased risk for NODAT could be partly mediated by the effect of Tac on mitochondria from pancreatic beta-cells. Common and rare mitochondrial DNA variants have been linked to the risk of diabetes. Our aim was to determine whether mtDNA polymorphisms/haplogroups were associated with NODAT in Tac-treated kidney transplanted. METHODS Seven polymorphisms that define the common European haplogroups were determined in 115 NODAT and 197 no-NODAT patients. RESULTS Haplogroup H was significantly more frequent in the NODAT group (50% vs. 35%; p=0.01, OR=1.82). There was no difference between patients without and with (n=106) D2M prior to the transplant. CONCLUSIONS Mitochondrial haplogroup H was associated with the risk for NODAT among Tac-treated transplanted patients. The reported differences between the mtDNA variants could explain the increased NODAT-risk among H-patients.
Human Molecular Genetics | 2014
Ester López-Gallardo; Sonia Emperador; Abelardo Solano; Laura Llobet; Antonio Martín-Navarro; Manuel J. López-Pérez; Paz Briones; Mercedes Pineda; Rafael Artuch; Elena Barraquer; Ivonne Jericó; Eduardo Ruiz-Pesini; Julio Montoya
Mitochondrial DNA mutations at MT-ATP6 gene are relatively common in individuals suffering from striatal necrosis syndromes. These patients usually do not show apparent histochemical and/or biochemical signs of oxidative phosphorylation dysfunction. Because of this, MT-ATP6 is not typically analyzed in many other mitochondrial disorders that have not been previously associated to mutations in this gene. To correct this bias, we have performed a screening of the MT-ATP6 gene in a large collection of patients suspected of suffering different mitochondrial DNA (mtDNA) disorders. In three cases, biochemical, molecular-genetics and other analyses in patient tissues and cybrids were also carried out. We found three new pathologic mutations. Two of them in patients showing phenotypes that have not been commonly associated to mutations in the MT-ATP6 gene. These results remark the importance of sequencing the MT-ATP6 gene in patients with striatal necrosis syndromes, but also within other mitochondrial pathologies. This gene should be sequenced at least in all those patients suspected of suffering an mtDNA disorder disclosing normal results for histochemical and biochemical analyses of respiratory chain.
Clinical and Experimental Ophthalmology | 2014
Iñigo Martínez-Romero; M Dolores Herrero‐Martín; Laura Llobet; Sonia Emperador; Antonio Martín-Navarro; Bernat Narberhaus; Francisco J. Ascaso; Ester López-Gallardo; Julio Montoya; Eduardo Ruiz-Pesini
Mutations causing Leber hereditary optic neuropathy are usually homoplasmic, show incomplete penetrance, and many of the affected positions are not well conserved through evolution. A large percentage of patients harbouring these mutations have no family history of disease. Moreover, the transfer of the mutation in the cybrid model is frequently not accompanied by the transfer of the cellular, biochemical and molecular phenotype. All these features make difficult their classification as the etiologic factors for this disease. We report a patient who exhibits typical clinical features of Leber hereditary optic neuropathy but lacks all three of the most common mitochondrial DNA mutations.
Tissue Engineering Part C-methods | 2015
Laura Llobet; Julio Montoya; Ester López-Gallardo; Eduardo Ruiz-Pesini
Besides the advance in scientific knowledge and the production of different compounds, cell culture can now be used to obtain cells for regenerative medicine. To avoid microbial contamination, antibiotics were usually incorporated into culture media. However, these compounds affect cell biochemistry and may modify the differentiation potential of cultured cells. To check this possibility, we grew human adipose tissue-derived stem cells and differentiated them to adipocyte with or without antibiotics commonly used in these culture protocols, such as a penicillin-streptomycin-amphotericin mix or gentamicin. We show that these antibiotics affect cell differentiation. Therefore, antibiotics should not be used in cell culture because aseptic techniques make these compounds unnecessary.
Cell Biology and Toxicology | 2013
María Palacín; Eliecer Coto; Laura Llobet; David Pacheu-Grau; Julio Montoya; Eduardo Ruiz-Pesini
FK506 is an important immunosuppressive medication. However, it can provoke neurotoxicity, nephrotoxicity, and diabetes as adverse side effects. The decrease in oxygen consumption of rat cells treated with pharmacologically relevant concentrations of FK506, along with other evidences, has insinuated that some of the toxic effects are probably caused by drug-induced mitochondrial dysfunction at the level of gene expression. To confirm this suggestion, we have analyzed cell respiration and mitochondrial protein synthesis in human cell lines treated with FK506. This drug provokes an important decrease in oxygen consumption, accompanied by a slight reduction in the synthesis of mitochondria DNA-encoded proteins. These results are similar to those triggered by rapamycin, another macrolide with immunosuppressive properties, therefore insinuating a common toxic pathway.
Environmental Health Perspectives | 2016
Ester López-Gallardo; Laura Llobet; Sonia Emperador; Julio Montoya; Eduardo Ruiz-Pesini
Background: The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)– and mitochondrial DNA (mtDNA)–encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. Objectives: We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. Methods: We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. Results: TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. Conclusions: In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. Citation: López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399–1405; http://dx.doi.org/10.1289/EHP182
Disease Models & Mechanisms | 2015
Laura Llobet; Janne M. Toivonen; Julio Montoya; Eduardo Ruiz-Pesini; Ester López-Gallardo
ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. Summary: Some medical drugs and environmental chemical pollutants acting on the oxidative phosphorylation system can alter adipocyte differentiation and adipogenesis and, thus, have important consequences for human health.
Drug Development Research | 2012
Eldris Iglesias; Laura Llobet; David Pacheu-Grau; Aurora Gómez-Durán; Eduardo Ruiz-Pesini
Preclinical Research
Redox biology | 2017
Laura Llobet; M. Pilar Bayona-Bafaluy; David Pacheu-Grau; Elena Torres-Perez; Jose M. Arbones-Mainar; M. Ángeles Navarro; Covadonga Gómez-Díaz; Julio Montoya; Ester López-Gallardo; Eduardo Ruiz-Pesini
The oxidative phosphorylation system is important for adipocyte differentiation. Therefore, xenobiotics inhibitors of the oxidative phosphorylation system could affect adipocyte differentiation and adipokine secretion. As adipokines impact the overall health status, these xenobiotics may have wide effects on human health. Some of these xenobiotics are widely used therapeutic drugs, such as ribosomal antibiotics. Because of its similarity to the bacterial one, mitochondrial translation system is an off-target for these compounds. To study the influence of the ribosomal antibiotic linezolid on adipokine production, we analyzed its effects on adipocyte secretome. Linezolid, at therapeutic concentrations, modifies the levels of apolipoprotein E and several adipokines and proteins related with the extracellular matrix. This antibiotic also alters the global methylation status of human adipose tissue-derived stem cells and, therefore, its effects are not limited to the exposure period. Besides their consequences on other tissues, xenobiotics acting on the adipocyte oxidative phosphorylation system alter apolipoprotein E and adipokine production, secondarily contributing to their systemic effects.
Metabolic Brain Disease | 2013
Laura Llobet; Aurora Gómez-Durán; Ruth Iceta; Eldris Iglesias; Julio Montoya; Jesús Martín-Martínez; José Ramón Ara; Eduardo Ruiz-Pesini
Multiple sclerosis is likely caused by a complex interaction of multiple genes and environmental factors. The contribution of mitochondrial DNA genetic backgrounds has been frequently reported. To evaluate the effect of mitochondrial DNA haplogroups in the same genetic and environmental circumstances, we have built human transmitochondrial cell lines and simulated the effect of axon demyelination, one of the hallmarks of multiple sclerosis pathology, by altering the ionic gradients through the plasmalemma and increasing ATP consumption. In this model, mitochondrial biogenesis is observed. This process is larger in Uk cybrids, which mirrors their lower oxidative phosphorylation capacity in basal conditions. This model replicates a process occurring in both patients suffering from multiple sclerosis and several animal models of axon demyelination. Therefore, it can be used to analyze the contribution of various mitochondrial DNA genotypes to multiple sclerosis. In this sense, a longer or stronger energy stress, such as that associated with demyelinated axons in multiple sclerosis, could make Uk individuals more susceptible to this pathology. Finally, pharmacologic compounds targeted to mitochondrial biogenesis could be a potential therapy for multiple sclerosis.