Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura M. Cox is active.

Publication


Featured researches published by Laura M. Cox.


Nature | 2012

Antibiotics in early life alter the murine colonic microbiome and adiposity

Ilseung Cho; Shingo Yamanishi; Laura M. Cox; Barbara A. Methé; Jiri Zavadil; Kelvin Li; Zhan Gao; Douglas Mahana; Kartik Raju; Isabel Teitler; Huilin Li; Alexander V. Alekseyenko; Martin J. Blaser

Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.


Nature Medicine | 2016

Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer

Maria Gloria Dominguez-Bello; Kassandra M. De Jesús-Laboy; Nan Shen; Laura M. Cox; Amnon Amir; Antonio Gonzalez; Nicholas A. Bokulich; Se Jin Song; Marina Hoashi; Juana I. Rivera-Vinas; Keimari Mendez; Rob Knight; Jose C. Clemente

Exposure of newborns to the maternal vaginal microbiota is interrupted with cesarean birthing. Babies delivered by cesarean section (C-section) acquire a microbiota that differs from that of vaginally delivered infants, and C-section delivery has been associated with increased risk for immune and metabolic disorders. Here we conducted a pilot study in which infants delivered by C-section were exposed to maternal vaginal fluids at birth. Similarly to vaginally delivered babies, the gut, oral and skin bacterial communities of these newborns during the first 30 d of life was enriched in vaginal bacteria—which were underrepresented in unexposed C-section–delivered infants—and the microbiome similarity to those of vaginally delivered infants was greater in oral and skin samples than in anal samples. Although the long-term health consequences of restoring the microbiota of C-section–delivered infants remain unclear, our results demonstrate that vaginal microbes can be partially restored at birth in C-section–delivered babies.


Nature Communications | 2016

Alterations of the human gut microbiome in multiple sclerosis.

Sushrut Jangi; Roopali Gandhi; Laura M. Cox; Ning Li; Felipe von Glehn; Raymond Yan; Bonny Patel; Maria Antonietta Mazzola; Shirong Liu; Bonnie Glanz; Sandra Cook; Stephanie Tankou; Fiona Stuart; Kirsy Melo; Parham Nejad; Kathleen Smith; Begüm D. Topçuolu; James F. Holden; Pia Kivisäkk; Tanuja Chitnis; Philip L. De Jager; Francisco J. Quintana; Georg K. Gerber; Lynn Bry; Howard L. Weiner

The gut microbiome plays an important role in immune function and has been implicated in several autoimmune disorders. Here we use 16S rRNA sequencing to investigate the gut microbiome in subjects with multiple sclerosis (MS, n=60) and healthy controls (n=43). Microbiome alterations in MS include increases in Methanobrevibacter and Akkermansia and decreases in Butyricimonas, and correlate with variations in the expression of genes involved in dendritic cell maturation, interferon signalling and NF-kB signalling pathways in circulating T cells and monocytes. Patients on disease-modifying treatment show increased abundances of Prevotella and Sutterella, and decreased Sarcina, compared with untreated patients. MS patients of a second cohort show elevated breath methane compared with controls, consistent with our observation of increased gut Methanobrevibacter in MS in the first cohort. Further study is required to assess whether the observed alterations in the gut microbiome play a role in, or are a consequence of, MS pathogenesis.


Nature Reviews Endocrinology | 2015

Antibiotics in early life and obesity

Laura M. Cox; Martin J. Blaser

The intestinal microbiota can influence host metabolism. When given early in life, agents that disrupt microbiota composition, and consequently the metabolic activity of the microbiota, can affect the body mass of the host by either promoting weight gain or stunting growth. These effects are consistent with the role of the microbiota during development. In this Perspective, we posit that microbiota disruptions in early life can have long-lasting effects on body weight in adulthood. Furthermore, we examine the dichotomy between antibiotic-induced repression and promotion of growth and review the experimental and epidemiological evidence that supports these phenotypes. Considering the characteristics of the gut microbiota in early life as a distinct dimension of human growth and development, as well as comprehending the susceptibility of the microbiota to perturbation, will allow for increased understanding of human physiology and could lead to development of interventions to stem current epidemic diseases such as obesity, type 1 diabetes mellitus and type 2 diabetes mellitus.


Nature Communications | 2015

Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment

Yael R. Nobel; Laura M. Cox; Francis F. Kirigin; Nicholas A. Bokulich; Shingo Yamanishi; Isabel Teitler; Jennifer Chung; Jiho Sohn; Cecily M. Barber; David S. Goldfarb; Kartik Raju; Sahar Abubucker; Yanjiao Zhou; Victoria E. Ruiz; Huilin Li; Makedonka Mitreva; Alexander V. Alekseyenko; George M. Weinstock; Erica Sodergren; Martin J. Blaser

Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Here we use a mouse model mimicking paediatric antibiotic use and find that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide alters both host and microbiota development. Early-life PAT accelerates total mass and bone growth, and causes progressive changes in gut microbiome diversity, population structure and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. Whereas control microbiota rapidly adapts to a change in diet, PAT slows the ecological progression, with delays lasting several months with previous macrolide exposure. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment.


Gastroenterology | 2016

Combination of Mass Cytometry and Imaging Analysis Reveals Origin, Location, and Functional Repopulation of Liver Myeloid Cells in Mice

Bruna Araújo David; Rafael Machado Rezende; Maísa Mota Antunes; Mônica Morais Santos; Maria Alice Freitas Lopes; Ariane Barros Diniz; Rafaela Vaz Sousa Pereira; Sarah Cozzer Marchesi; Débora Moreira Alvarenga; Brenda Naemi Nakagaki; Alan Moreira Araújo; Daniela Silva dos Reis; Renata Monti Rocha; Pedro Marques; Woo-Yong Lee; Justin F. Deniset; Pei Xiong Liew; Stephen Rubino; Laura M. Cox; Vanessa Pinho; Thiago M. Cunha; Gabriel da Rocha Fernandes; André G. Oliveira; Mauro M. Teixeira; Paul Kubes; Gustavo B. Menezes

BACKGROUND & AIMS Resident macrophages are derived from yolk sac precursors and seed the liver during embryogenesis. Native cells may be replaced by bone marrow precursors during extensive injuries, irradiation, and infections. We investigated the liver populations of myeloid immune cells and their location, as well as the dynamics of phagocyte repopulation after full depletion. The effects on liver function due to the substitution of original phagocytes by bone marrow-derived surrogates were also examined. METHODS We collected and analyzed liver tissues from C57BL/6 (control), LysM-EGFP, B6 ACTb-EGFP, CCR2-/-, CD11c-EYFP, CD11c-EYFP-DTR, germ-free mice, CX3CR1gfp/gfp, CX3CR1gpf/wt, and CX3CR1-DTR-EYFP. Liver nonparenchymal cells were immunophenotyped using mass cytometry and gene expression analyses. Kupffer and dendritic cells were depleted from mice by administration of clodronate, and their location and phenotype were examined using intravital microscopy and time-of-flight mass cytometry. Mice were given acetaminophen gavage or intravenous injections of fluorescently labeled Escherichia coli, blood samples were collected and analyzed, and liver function was evaluated. We assessed cytokine profiles of liver tissues using a multiplexed array. RESULTS Using mass cytometry and gene expression analyses, we identified 2 populations of hepatic macrophages and 2 populations of monocytes. We also identified 4 populations of dendritic cells and 1 population of basophils. After selective depletion of liver phagocytes, intravascular myeloid precursors began to differentiate into macrophages and dendritic cells; dendritic cells migrated out of sinusoids, after a delay, via the chemokine CX3CL1. The cell distribution returned to normal in 2 weeks, but the repopulated livers were unable to fully respond to drug-induced injury or clear bacteria for at least 1 month. This defect was associated with increased levels of inflammatory cytokines, and dexamethasone accelerated the repopulation of liver phagocytes. CONCLUSIONS In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.


The FASEB Journal | 2013

The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota

Laura M. Cox; Ilseung Cho; Scott A. Young; W. H. Kerr Anderson; Bartholomew J. Waters; Shao-Ching Hung; Zhan Gao; Douglas Mahana; Monika Bihan; Alexander V. Alekseyenko; Barbara A. Methé; Martin J. Blaser

Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high‐fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low‐fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454‐pyrosequencing of the microbial 16S rRNA gene, decreased microbial α‐diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3‐ and 12.4‐fold) and decreased Lachnospiraceae (2.0‐ and 2.7‐fold), while only HPMC increased Peptostreptococcaceae (3.4‐fold) and decreased Ruminococcaceae (2.7‐fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.—Cox, L. M., Cho, I., Young, S. A., Kerr Anderson, W. H., Waters, B. J., Hung, S.‐C., Gao, Z., Mahana, D., Bihan, M., Alekseyenko, A. V., Methé, B. A., Blaser, M. J. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. FASEB J. 27, 692–702 (2013). www.fasebj.org


Pediatric Infectious Disease Journal | 2017

Characterization of the Gastric Microbiota in a Pediatric Population According to helicobacter pylori Status

Laura Llorca; Guillermo I. Perez-Perez; Pedro Urruzuno; Maria Josefa Martínez; Tadasu Iizumi; Zhan Gao; Jiho Sohn; Jennifer Chung; Laura M. Cox; Aurea Simón-Soro; Alex Mira; Teresa Alarcón

Background: Helicobacter pylori colonizes the human stomach of approximately 50% of the world’s population, and increases the risk of several gastric diseases. The goal of this study is to compare the gastric microbiota in pediatric patients with and without H. pylori colonization. Methods: We studied 51 children who underwent gastric endoscopy because of dyspeptic symptoms (18 H. pylori positive and 33 negative). Gastric biopsies were obtained for rapid urease test, culture, histology and DNA extraction. H. pylori was quantified by quantitative polymerase chain reaction and the gastric microbiome studied by V4-16S ribosomal RNA gene high-throughput sequencing. Results: Bacterial richness and diversity of H. pylori-positive specimens were lower than those of negative, and both groups were clearly separated according to beta diversity. Taxonomic analysis confirmed that H. pylori-positive subjects had a higher relative abundance of Helicobacter genus (66.3%) than H. pylori-negative subjects (0.45%). Four phyla (proteobacteria, bacteroidetes, firmicutes and actinobacteria) accounted for >97% of all reads in both groups. Within proteobacteria, gamma- and betaproteobacteria were the most abundant for H. pylori-negative patients, whereas epsilonproteobacteria was for H. pylori positive. H. pylori-positive patients were associated with low body mass index. In the group of underweight patients (body mass index, <18.5), there were 46.1% of H. pylori-positive patients compared with 24% in the nonunderweight group (P = 0.049). Patients with active superficial gastritis in H. pylori-positive patients had the lowest alpha diversity (P = 0.035). Conclusions: We characterized the gastric microbiota for the first time in children with and without H. pylori and observed that when H. pylori is present, it tends to dominate the microbial community. In the H. pylori-negative patients, there was more relative abundance of gammaproteobacteria, betaproteobacteria, bacteroidia and clostridia classes and a higher bacterial richness and diversity.


Neurotherapeutics | 2018

Microbiota Signaling Pathways that Influence Neurologic Disease

Laura M. Cox; Howard L. Weiner

Though seemingly distinct and autonomous, emerging evidence suggests there is a bidirectional interaction between the intestinal microbiota and the brain. This crosstalk may play a substantial role in neurologic diseases, including anxiety, depression, autism, multiple sclerosis, Parkinson’s disease, and, potentially, Alzheimer’s disease. Long hypothesized by Metchnikoff and others well over 100 years ago, investigations into the mind–microbe axis is now seeing a rapid resurgence of research. If specific pathways and mechanisms of interaction are understood, it could have broad therapeutic potential, as the microbiome is environmentally acquired and can be modified to promote health. This review will discuss immune, endocrine, and neural system pathways that interconnect the gut microbiota to central nervous system and discuss how these findings might be applied to neurologic disease.


Multiple Sclerosis Journal | 2018

Investigation of probiotics in multiple sclerosis

Stephanie Tankou; Keren Regev; Brian C. Healy; Laura M. Cox; Emily Tjon; Pia Kivisäkk; Isabelle P Vanande; Sandra Cook; Roopali Gandhi; Bonnie I. Glanz; James Stankiewicz; Howard L. Weiner

None of the disease-modifying therapies (DMTs) currently being used for the management of multiple sclerosis (MS) are 100% effective. In addition, side effects associated with the use of these DMTs have limited the practice of combination therapy. Hence, there is a need for safe immunomodulatory agents to fine-tune the management of MS. The gut microbiome plays an important role in autoimmunity, and several studies have reported alterations in the gut microbiome of MS patients. Studies in animal model of MS have identified members of the gut commensal microflora that exacerbate or ameliorate neuroinflammation. Probiotics represent an oral, non-toxic immunomodulatory agent that could be used in combination with current MS therapy. We designed a pilot study to investigate the effect of VSL3 on the gut microbiome and peripheral immune system function in healthy controls and MS patients. VSL3 administration was associated with increased abundance of many taxa with enriched taxa predominated by Lactobacillus, Streptococcus, and Bifidobacterium species. At the immune level, VSL3 administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of intermediate monocytes (CD14highCD16low), decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes as well as decreased human leukocyte antigen–antigen D related (HLA-DR) MFI on dendritic cells.

Collaboration


Dive into the Laura M. Cox's collaboration.

Top Co-Authors

Avatar

Howard L. Weiner

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander V. Alekseyenko

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pia Kivisäkk

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Roopali Gandhi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sandra Cook

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephanie Tankou

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge