Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura M. Ensign is active.

Publication


Featured researches published by Laura M. Ensign.


Advanced Drug Delivery Reviews | 2012

Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers

Laura M. Ensign; Richard Cone; Justin Hanes

Oral delivery is the most common method for drug administration. However, poor solubility, stability, and bioavailability of many drugs make achieving therapeutic levels via the gastrointestinal (GI) tract challenging. Drug delivery must overcome numerous hurdles, including the acidic gastric environment and the continuous secretion of mucus that protects the GI tract. Nanoparticle drug carriers that can shield drugs from degradation and deliver them to intended sites within the GI tract may enable more efficient and sustained drug delivery. However, the rapid secretion and shedding of GI tract mucus can significantly limit the effectiveness of nanoparticle drug delivery systems. Many types of nanoparticles are efficiently trapped in and rapidly removed by mucus, making controlled release in the GI tract difficult. This review addresses the protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier.


Science Translational Medicine | 2012

Mucus-Penetrating Nanoparticles for Vaginal Drug Delivery Protect Against Herpes Simplex Virus

Laura M. Ensign; Benjamin C. Tang; Ying Ying Wang; Terence A. Tse; Timothy E. Hoen; Richard A. Cone; Justin Hanes

Mucus-penetrating particles improve drug delivery to the mucosal surface of the mouse vagina and deliver acyclovir for enhanced protection against vaginal herpes infection in mice. Thick and Sticky For most, mucus is an unfortunate, never-ending by-product of a summer cold. For those in nanomedicine, however, mucus represents a formidable barrier to delivering drugs to various tissues, including the sinuses and the vagina. Here, Ensign and colleagues have devised a nanoparticle that is capable of penetrating the thick mucus layer standing between drug and tissue of interest. To develop a drug delivery vehicle that could not only move through mucus, but also afford sustained release over time, Ensign et al. coated polystyrene or biodegradable poly(lactic-co-glycolic acid) nanoparticles with a low–molecular weight polymer commonly known as PEG. These mucus-penetrating particles (MPPs) moved quickly through mouse cervicovaginal mucus (CVM) when delivered in hypotonic solution, allowing them to penetrate deep into the vaginal folds within minutes and to remain there for 24 hours. Conversely, conventional, uncoated particles were stuck in the thick mucus layer, unable to reach the tissue below. Both particle types displayed the same behavior in human CVM ex vivo. Ensign et al. showed that these particles could protect against vaginal transmission of herpes simplex virus (HSV). Mice were administered either MPPs laden with a modified form of the drug acyclovir—which is used in humans to treat HSV outbreaks—or a soluble form of the drug, before challenge with the virus. Of the mice that received the MPPs, only 47% of the mice were infected with HSV, whereas 84% of the controls were infected after receiving soluble acyclovir at the same concentration. Although more tests will be needed to show protection against herpes in situations that more closely mimic the human vagina, these MPPs may be the key to safe and effective drug delivery to prevent and treat sexually transmitted infections. Incomplete coverage and short duration of action limit the effectiveness of vaginally administered drugs, including microbicides, for preventing sexually transmitted infections. We investigated vaginal distribution, retention, and safety of nanoparticles with surfaces modified to enhance transport through mucus. We show that mucus-penetrating particles (MPPs) provide uniform distribution over the vaginal epithelium, whereas conventional nanoparticles (CPs) that are mucoadhesive are aggregated by mouse vaginal mucus, leading to poor distribution. Moreover, when delivered hypotonically, MPPs were transported advectively (versus diffusively) through mucus deep into vaginal folds (rugae) within minutes. By penetrating into the deepest mucus layers, more MPPs were retained in the vaginal tract after 6 hours compared to CPs. After 24 hours, when delivered in a conventional vaginal gel, patches of a model drug remained on the vaginal epithelium, whereas the epithelium was coated with drug delivered by MPPs. We then developed MPPs composed of acyclovir monophosphate (ACVp). When administered before vaginal herpes simplex virus 2 challenge, ACVp-MPPs protected 53% of mice compared to only 16% protected by soluble drug. Overall, MPPs improved vaginal drug distribution and retention, provided more effective protection against vaginal viral challenge than soluble drug, and were nontoxic when administered daily for 1 week.


Journal of Controlled Release | 2015

Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse

Katharina Maisel; Laura M. Ensign; Mihika Reddy; Richard A. Cone; Justin Hanes

It is believed that mucoadhesive surface properties on particles delivered to the gastrointestinal (GI) tract improve oral absorption or local targeting of various difficult-to-deliver drug classes. To test the effect of nanoparticle mucoadhesion on distribution of nanoparticles in the GI tract, we orally and rectally administered nano- and microparticles that we confirmed possessed surfaces that were either strongly mucoadhesive or non-mucoadhesive. We found that mucoadhesive particles (MAP) aggregated in mucus in the center of the GI lumen, far away from the absorptive epithelium, both in healthy mice and in a mouse model of ulcerative colitis (UC). In striking contrast, water absorption by the GI tract rapidly and uniformly transported non-mucoadhesive mucus-penetrating particles (MPP) to epithelial surfaces, including reaching the surfaces between villi in the small intestine. When using high gavage fluid volumes or injection into ligated intestinal loops, common methods for assessing oral drug and nanoparticle absorption, we found that both MAP and MPP became well-distributed throughout the intestine, indicating that the barrier properties of GI mucus were compromised. In the mouse colorectum, MPP penetrated into mucus in the deeply in-folded surfaces to evenly coat the entire epithelial surface. Moreover, in a mouse model of UC, MPP were transported preferentially into the disrupted, ulcerated tissue. Our results suggest that delivering drugs in non-mucoadhesive MPP is likely to provide enhanced particle distribution, and thus drug delivery, in the GI tract, including to ulcerated tissues.


Journal of Controlled Release | 2012

A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles

Olcay Mert; Samuel K. Lai; Laura M. Ensign; Ming Yang; Ying Ying Wang; Joseph Wood; Justin Hanes

Mucosal surfaces are protected by a highly viscoelastic and adhesive mucus layer that traps most foreign particles, including conventional drug and gene carriers. Trapped particles are eliminated on the order of seconds to hours by mucus clearance mechanisms, precluding sustained and targeted drug and nucleic acid delivery to mucosal tissues. We have previously shown that polymeric coatings that minimize adhesive interactions with mucus constituents lead to particles that rapidly penetrate human mucus secretions. Nevertheless, a particular challenge in formulating drug-loaded mucus penetrating particles (MPP) is that many commonly used surfactants are either mucoadhesive, or do not facilitate efficient drug encapsulation. We tested a novel surfactant molecule for particle formulation composed of Vitamin E conjugated to 5 kDa poly(ethylene glycol) (VP5k). We show that VP5k-coated poly(lactide-co-glycolide) (PLGA) nanoparticles rapidly penetrate human cervicovaginal mucus, whereas PLGA nanoparticles coated with polyvinyl alcohol or Vitamin E conjugated to 1 kDa PEG were trapped. Importantly, VP5k facilitated high loading of paclitaxel, a frontline chemo drug, into PLGA MPP, with controlled release for at least 4 days and negligible burst release. Our results offer a promising new method for engineering biodegradable, drug-loaded MPP for sustained and targeted delivery of therapeutics at mucosal surfaces.


Journal of Controlled Release | 2014

Nanoparticle-based drug delivery to the vagina: A review

Laura M. Ensign; Richard A. Cone; Justin Hanes

Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted.


Advanced Healthcare Materials | 2014

Vaginal Delivery of Paclitaxel via Nanoparticles with Non-Mucoadhesive Surfaces Suppresses Cervical Tumor Growth

Ming Yang; Tao Yu; Ying Ying Wang; Samuel K. Lai; Qi Zeng; Bolong Miao; Benjamin C. Tang; Brian W. Simons; Laura M. Ensign; Guanshu Liu; Kannie W.Y. Chan; Chih Yin Juang; Olcay Mert; Joseph Wood; Jie Fu; Michael T. McMahon; T. C. Wu; Chien Fu Hung; Justin Hanes

Local delivery of chemotherapeutics in the cervicovaginal tract using nanoparticles may reduce adverse side effects associated with systemic chemotherapy, while improving outcomes for early-stage cervical cancer. It is hypothesized here that drug-loaded nanoparticles that rapidly penetrate cervicovaginal mucus (CVM) lining the female reproductive tract will more effectively deliver their payload to underlying diseased tissues in a uniform and sustained manner compared with nanoparticles that do not efficiently penetrate CVM. Paclitaxel-loaded nanoparticles are developed, composed entirely of polymers used in FDA-approved products, which rapidly penetrate human CVM and provide sustained drug release with minimal burst effect. A mouse model is further employed with aggressive cervical tumors established in the cervicovaginal tract to compare paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (conventional particles, or CP) and similar particles coated with Pluronic F127 (mucus-penetrating particles, or MPP). CP are mucoadhesive and, thus, aggregated in mucus, while MPP achieve more uniform distribution and close proximity to cervical tumors. Paclitaxel-MPP suppress tumor growth more effectively and prolong median survival of mice compared with unencapsulated paclitaxel or paclitaxel-CP. Histopathological studies demonstrate minimal toxicity to the cervicovaginal epithelia, suggesting paclitaxel-MPP may be safe for intravaginal use. These results demonstrate the in vivo advantages of polymer-based MPP for treatment of tumors localized to a mucosal surface.


Molecular Pharmaceutics | 2013

Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues.

Laura M. Ensign; Andreas Henning; Craig S. Schneider; Katharina Maisel; Ying Ying Wang; Marc D. Porosoff; Richard A. Cone; Justin Hanes

Sustained drug delivery to mucosal surfaces has the potential to improve the effectiveness of prophylactic and therapeutic treatments for numerous diseases and conditions, including inflammatory bowel disease, sexually transmitted diseases, cystic fibrosis, glaucoma, dry eye, and various cancers. Sustained delivery systems such as nanoparticles can be useful for mucosal delivery, but recent work suggests they must penetrate the rapidly cleared mucus barrier that overlies all mucosal epithelia to achieve uniform distribution on epithelial surfaces and enhanced residence time. Thus, it is important to evaluate the mucus-penetrating ability of nanosized delivery systems in preclinical animal studies, and for administration to humans. We describe a simple ex vivo method to visualize and quantify nanoparticle transport in mucus on fresh mucosal tissues. Using this method in murine models, we observed variations in the mucus mesh at different anatomical locations, as well as cyclical variations that may have implications for mucosal delivery.


Advanced Drug Delivery Reviews | 2015

Particle tracking in drug and gene delivery research: State-of-the-art applications and methods ☆

Benjamin S. Schuster; Laura M. Ensign; Daniel B. Allan; Jung Soo Suk; Justin Hanes

Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle trackings applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful.


Journal of Controlled Release | 2016

Nanoparticles for oral delivery: Design, evaluation and state-of-the-art

Abhijit A. Date; Justin Hanes; Laura M. Ensign

The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.


Journal of Clinical Investigation | 2014

Hyaluronan in cervical epithelia protects against infection-mediated preterm birth

Yucel Akgul; R. Ann Word; Laura M. Ensign; Yu Yamaguchi; John P. Lydon; Justin Hanes; Mala Mahendroo

Increased synthesis of cervical hyaluronan (HA) from early to late pregnancy has long been proposed to play an essential role in disorganization of the collagen-rich extracellular matrix to allow for maximal compliance and dilation of the cervix during the birth process. Here, we show that HA is not essential for increased cervical distensibility during late pregnancy. Rather, cervicovaginal HA plays an unanticipated important role in epithelial barrier protection of the lower reproductive tract. Specifically, HA depletion in the cervix and vagina resulted in inappropriate differentiation of epithelial cells, increased epithelial and mucosal permeability, and strikingly increased preterm birth rates in a mouse model of ascending vaginal infection. Collectively, these findings revealed that although HA is not obligatory for cervical compliance, it is crucial for maintaining an epithelial and mucosal barrier to limit pathogen infiltration of the lower reproductive tract during pregnancy and thereby is protective against infection-mediated preterm birth.

Collaboration


Dive into the Laura M. Ensign's collaboration.

Top Co-Authors

Avatar

Justin Hanes

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel K. Lai

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ming Yang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Tao Yu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ying Ying Wang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jung Soo Suk

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Olcay Mert

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Qingguo Xu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge