Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura M. Holsen is active.

Publication


Featured researches published by Laura M. Holsen.


Obesity | 2010

Neural Mechanisms Associated With Food Motivation in Obese and Healthy Weight Adults

Laura E. Martin; Laura M. Holsen; Rebecca J. Chambers; Amanda S. Bruce; William M. Brooks; Jennifer R. Zarcone; Merlin G. Butler; Cary R. Savage

One out of three adults in the United States is clinically obese. Excess food intake is associated with food motivation, which has been found to be higher in obese compared to healthy weight (HW) individuals. Little is known, however, regarding the neural mechanisms associated with food motivation in obese compared to HW adults. The current study used functional magnetic resonance imaging (fMRI) to examine changes in the hemodynamic response in obese and HW adults while they viewed food and nonfood images in premeal and postmeal states. During the premeal condition, obese participants showed increased activation, compared to HW participants, in anterior cingulate cortex (ACC) and medial prefrontal cortex (MPFC). Moreover, in the obese group, self‐report measures of disinhibition were negatively correlated with premeal ACC activations and self‐report measures of hunger were positively correlated with premeal MPFC activations. During the postmeal condition, obese participants also showed greater activation than HW participants in the MPFC. These results indicate that brain function associated with food motivation differs in obese and HW adults and may have implications for understanding brain mechanisms contributing to overeating and obesity, and variability in response to diet interventions.


International Journal of Obesity | 2010

Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control.

Amanda S. Bruce; Laura M. Holsen; Rebecca J. Chambers; Laura E. Martin; William M. Brooks; Jennifer R. Zarcone; Merlin G. Butler; Cary R. Savage

Objective:To investigate the neural mechanisms of food motivation in children and adolescents, and examine brain activation differences between healthy weight (HW) and obese participants.Subjects:Ten HW children (ages 11–16; BMI < 85%ile) and 10 obese children (ages 10–17; BMI >95%ile) matched for age, gender and years of education.Measurements:Functional magnetic resonance imaging (fMRI) scans were conducted twice: when participants were hungry (pre-meal) and immediately after a standardized meal (post-meal). During the fMRI scans, the participants passively viewed blocked images of food, non-food (animals) and blurred baseline control.Results:Both groups of children showed brain activation to food images in the limbic and paralimbic regions (PFC/OFC). The obese group showed significantly greater activation to food pictures in the PFC (pre-meal) and OFC (post-meal) than the HW group. In addition, the obese group showed less post-meal reduction of activation (vs pre-meal) in the PFC, limbic and the reward-processing regions, including the nucleus accumbens.Conclusion:Limbic and paralimbic activation in high food motivation states was noted in both groups of participants. However, obese children were hyper-responsive to food stimuli as compared with HW children. In addition, unlike HW children, brain activations in response to food stimuli in obese children failed to diminish significantly after eating. This study provides initial evidence that obesity, even among children, is associated with abnormalities in neural networks involved in food motivation, and that the origins of neural circuitry dysfunction associated with obesity may begin early in life.


NeuroImage | 2005

Neural mechanisms underlying food motivation in children and adolescents.

Laura M. Holsen; Jennifer R. Zarcone; Travis Thompson; William M. Brooks; Mary F. Anderson; Jasjit S. Ahluwalia; Nicole L. Nollen; Cary R. Savage

Dramatic increases in childhood obesity necessitate a more complete understanding of neural mechanisms of hunger and satiation in pediatric populations. In this study, normal weight children and adolescents underwent functional magnetic resonance imaging (fMRI) scanning before and after eating a meal. Participants showed increased activation to visual food stimuli in the amygdala, medial frontal/orbitofrontal cortex, and insula in the pre-meal condition; no regions of interest responded in the post-meal condition. These results closely parallel previous findings in adults. In addition, we found evidence for habituation to food stimuli in the amygdala within the pre-meal session. These findings provide evidence that normal patterns of neural activity related to food motivation begin in childhood. Results have implications for obese children and adults, who may have abnormal hunger and satiation mechanisms.


Obesity | 2006

Neural mechanisms underlying hyperphagia in Prader-Willi syndrome.

Laura M. Holsen; Jennifer R. Zarcone; William M. Brooks; Merlin G. Butler; Travis Thompson; Jasjit S. Ahluwalia; Nicole L. Nollen; Cary R. Savage

Objective: Prader‐Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group.


Journal of Psychiatry & Neuroscience | 2012

Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa

Laura M. Holsen; Elizabeth A. Lawson; Justine I. Blum; Eunice Ko; Nikos Makris; Pouneh K. Fazeli; Anne Klibanski; Jill M. Goldstein

BACKGROUND Previous studies have provided evidence of food motivation circuitry dysfunction in individuals with anorexia nervosa. However, methodological limitations present challenges to the development of a cohesive neurobiological model of anorexia nervosa. Our goal was to investigate the neural circuitry of appetite dysregulation across states of hunger and satiety in active and weight-restored phases of anorexia nervosa using robust methodology to advance our understanding of potential neural circuitry abnormalities related to hedonic and nonhedonic state and trait. METHODS We scanned women with active anorexia nervosa, weight-restored women with anorexia nervosa and healthy-weight controls on a 3-T Siemens magnetic resonance scanner while they viewed images of high- and low-calorie foods and objects before (premeal) and after (postmeal) eating a 400 kcal meal. RESULTS We enrolled 12 women with active disease, 10 weight-restored women with anorexia nervosa and 11 controls in our study. Compared with controls, both weight-restored women and those with active disease demonstrated hypoactivity premeal in the hypothalamus, amygdala and anterior insula in response to high-calorie foods (v. objects). Postmeal, hypoactivation in the anterior insula persisted in women with active disease. Percent signal change in the anterior insula was positively correlated with food stimuli ratings and hedonic and nonhedonic appetite ratings in controls, but not women with active disease. LIMITATIONS Our findings are limited by a relatively small sample size, which prevented the use of an analysis of variance model and exploration of interaction effects, although our substantial effect sizes of between-group differences suggest adequate power for our statistical analysis approach. Participants taking psychotropic medications were included. CONCLUSION Our data provide evidence of potential state and trait hypoactivations in food motivation regions involved in the assessment of foods reward value and integration of these with interoceptive signalling of ones internal state of well-being, with important relations between brain activity and homeostatic and hedonic aspects of appetite. Our findings give novel evidence of disruption in neurobiological circuits and stress the importance of examining both state and trait characteristics in the investigation of brain phenotypes in individuals with anorexia nervosa.


The American Journal of Clinical Nutrition | 2013

Effects of dietary glycemic index on brain regions related to reward and craving in men

Belinda Lennerz; David C. Alsop; Laura M. Holsen; Emily Stern; Rafael Rojas; Cara B. Ebbeling; Jill M. Goldstein; David S. Ludwig

BACKGROUND Qualitative aspects of diet influence eating behavior, but the physiologic mechanisms for these calorie-independent effects remain speculative. OBJECTIVE We examined effects of the glycemic index (GI) on brain activity in the late postprandial period after a typical intermeal interval. DESIGN With the use of a randomized, blinded, crossover design, 12 overweight or obese men aged 18-35 y consumed high- and low-GI meals controlled for calories, macronutrients, and palatability on 2 occasions. The primary outcome was cerebral blood flow as a measure of resting brain activity, which was assessed by using arterial spin-labeling functional magnetic resonance imaging 4 h after test meals. We hypothesized that brain activity would be greater after the high-GI meal in prespecified regions involved in eating behavior, reward, and craving. RESULTS Incremental venous plasma glucose (2-h area under the curve) was 2.4-fold greater after the high- than the low-GI meal (P = 0.0001). Plasma glucose was lower (mean ± SE: 4.7 ± 0.14 compared with 5.3 ± 0.16 mmol/L; P = 0.005) and reported hunger was greater (P = 0.04) 4 h after the high- than the low-GI meal. At this time, the high-GI meal elicited greater brain activity centered in the right nucleus accumbens (a prespecified area; P = 0.0006 with adjustment for multiple comparisons) that spread to other areas of the right striatum and to the olfactory area. CONCLUSIONS Compared with an isocaloric low-GI meal, a high-GI meal decreased plasma glucose, increased hunger, and selectively stimulated brain regions associated with reward and craving in the late postprandial period, which is a time with special significance to eating behavior at the next meal. This trial was registered at clinicaltrials.gov as NCT01064778.


The Journal of Clinical Endocrinology and Metabolism | 2012

Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa.

Elizabeth A. Lawson; Laura M. Holsen; McKale Santin; Erinne Meenaghan; Kamryn T. Eddy; Anne E. Becker; David B. Herzog; Jill M. Goldstein; Anne Klibanski

CONTEXT Animal data suggest that oxytocin is a satiety hormone. We have demonstrated that anorexia nervosa (anorexia), a disorder characterized by food restriction, low weight, and hypoleptinemia, is associated with decreased nocturnal oxytocin secretion. We have also reported functional magnetic resonance imaging (fMRI) hypoactivation in anorexia in brain regions involved in food motivation. The relationships between oxytocin, food-motivation neurocircuitry, and disordered eating psychopathology have not been investigated in humans. OBJECTIVE The objective of the study was to determine whether the oxytocin response to feeding in anorexia differs from healthy women and to establish the relationship between oxytocin secretion and disordered eating psychopathology and food-motivation neurocircuitry. DESIGN This was a cross-sectional study. SETTING The study was conducted at a clinical research center. PARTICIPANTS Participants included 35 women: 13 anorexia (AN), nine weight-recovered anorexia (ANWR), and 13 healthy controls (HC). MEASURES Peripheral oxytocin and leptin levels were measured fasting and 30, 60, and 120 min after a standardized mixed meal. The Eating Disorder Examination-Questionnaire was used to assess disordered eating psychopathology. fMRI was performed during visual processing of food and nonfood stimuli to measure brain activation before and after the meal. RESULTS Mean oxytocin levels were higher in AN than HC at 60 and 120 min and lower in ANWR than HC at 0, 30, and 120 min and AN at all time points. Mean oxytocin area under the curve (AUC) was highest in AN, intermediate in HC, and lowest in ANWR. Mean leptin levels at all time points and AUC were lower in AN than HC and ANWR. Oxytocin AUC was associated with leptin AUC in ANWR and HC but not in AN. Oxytocin AUC was associated with the severity of disordered eating psychopathology in AN and ANWR, independent of leptin secretion, and was associated with between-group variance in fMRI activation in food motivation brain regions, including the hypothalamus, amygdala, hippocampus, orbitofrontal cortex, and insula. CONCLUSIONS Oxytocin may be involved in the pathophysiology of anorexia.


International Journal of Obesity | 2012

Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity.

Laura M. Holsen; Cary R. Savage; Laura E. Martin; Amanda S. Bruce; Rebecca J. Lepping; Eunice Ko; William M. Brooks; Merlin G. Butler; Jennifer R. Zarcone; Jill M. Goldstein

Background:The majority of research on obesity (OB) has focused primarily on clinical features (eating behavior, adiposity measures) or peripheral appetite-regulatory peptides (leptin, ghrelin). However, recent functional neuroimaging studies have demonstrated that some reward circuitry regions that are associated with appetite-regulatory hormones are also involved in the development and maintenance of OB. Prader–Willi syndrome (PWS), characterized by hyperphagia and hyperghrelinemia reflecting multi-system dysfunction in inhibitory and satiety mechanisms, serves as an extreme model of genetic OB. Simple (non-PWS) OB represents an OB-control state.Objective:This study investigated subcortical food motivation circuitry and prefrontal inhibitory circuitry functioning in response to food stimuli before and after eating in individuals with PWS compared with OB. We hypothesized that groups would differ in limbic regions (that is, hypothalamus, amygdala) and prefrontal regions associated with cognitive control (that is, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC) after eating.Design and participants:A total of 14 individuals with PWS, 14 BMI- and age-matched individuals with OB, and 15 age-matched healthy-weight controls viewed food and non-food images while undergoing functional MRI before (pre-meal) and after (post-meal) eating. Using SPM8, group contrasts were tested for hypothesized regions: hypothalamus, nucleus accumbens (NAc), amygdala, hippocampus, OFC, medial PFC and DLPFC.Results:Compared with OB and HWC, PWS demonstrated higher activity in reward/limbic regions (NAc, amygdala) and lower activity in the hypothalamus and hippocampus in response to food (vs non-food) images pre-meal. Post meal, PWS exhibited higher subcortical activation (hypothalamus, amygdala, hippocampus) compared with OB and HWC. OB showed significantly higher activity versus PWS and HWC in cortical regions (DLPFC, OFC) associated with inhibitory control.Conclusion:In PWS, compared with OB per se, results suggest hyperactivations in subcortical reward circuitry and hypoactivations in cortical inhibitory regions after eating, which provides evidence of neural substrates associated with variable abnormal food motivation phenotypes in PWS and simple OB.


Journal of Affective Disorders | 2011

Stress Response Circuitry Hypoactivation Related to Hormonal Dysfunction in Women with Major Depression

Laura M. Holsen; Sarah B. Spaeth; Jong Hwan Lee; Lauren A. Ogden; Anne Klibanski; Susan Whitfield-Gabrieli; Jill M. Goldstein

BACKGROUND Women have approximately twice the risk of major depressive disorder (MDD) than men, yet this difference remains largely unexplained. Previous MDD research suggests high rates of endocrine dysfunction, which may be related to deficits in brain activity in stress response circuitry [hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC)]. This functional magnetic resonance imaging (fMRI) study investigated the relationship between hypothalamic-pituitary-gonadal (HPG)-axis hormones and stress response circuitry dysfunction in MDD in women. METHODS During the late follicular/midcycle phase of the menstrual cycle, female participants (10 with extensive histories of MDD, in remission, 10 healthy controls) were scanned while viewing negative and neutral arousal pictures. Group differences in blood oxygen-level dependent (BOLD) signal changes were analyzed using SPM2. Baseline gonadal hormones included estradiol, progesterone, and testosterone. RESULTS fMRI results showed greater BOLD signal intensity changes in controls versus MDD in hypothalamus, amygdala, hippocampus, OFC, ACC, and subgenual ACC, findings unrelated to medication status. MDD women had a lower serum estradiol and higher serum progesterone compared to controls. Hypoactivations in hypothalamus, subgenual ACC, amygdala and OFC in MDD were associated with low estradiol and high progesterone. LIMITATIONS Generalizability of our findings is limited by small sample size and restriction to females, although this did not affect the internal validity of the results. CONCLUSIONS Hypoactivation of the stress response circuitry in MDD women is associated with dysregulation of the HPG-axis. Associations between brain activity deficits and hormonal disruption in MDD may ultimately contribute to understanding sex differences in MDD.


Autism Research | 2008

Brain function and gaze fixation during facial-emotion processing in fragile X and autism

Kim M. Dalton; Laura M. Holsen; Leonard Abbeduto; Richard J. Davidson

Fragile X syndrome (FXS) is the most commonly known genetic disorder associated with autism spectrum disorder (ASD). Overlapping features in these populations include gaze aversion, communication deficits, and social withdrawal. Although the association between FXS and ASD has been well documented at the behavioral level, the underlying neural mechanisms associated with the social/emotional deficits in these groups remain unclear. We collected functional brain images and eye‐gaze fixations from 9 individuals with FXS and 14 individuals with idiopathic ASD, as well as 15 typically developing (TD) individuals, while they performed a facial‐emotion discrimination task. The FXS group showed a similar yet less aberrant pattern of gaze fixations compared with the ASD group. The FXS group also showed fusiform gyrus (FG) hypoactivation compared with the TD control group. Activation in FG was strongly and positively associated with average eye fixation and negatively associated with ASD characteristics in the FXS group. The FXS group displayed significantly greater activation than both the TD control and ASD groups in the left hippocampus (HIPP), left superior temporal gyrus (STG), right insula (INS), and left postcentral gyrus (PCG). These group differences in brain activation are important as they suggest unique underlying face‐processing neural circuitry in FXS versus idiopathic ASD, largely supporting the hypothesis that ASD characteristics in FXS and idiopathic ASD reflect partially divergent impairments at the neural level, at least in FXS individuals without a co‐morbid diagnosis of ASD.

Collaboration


Dive into the Laura M. Holsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Whitfield-Gabrieli

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar

Jennifer R. Zarcone

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge