Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura M. McNamee is active.

Publication


Featured researches published by Laura M. McNamee.


Nature Biotechnology | 2012

Patterns of technological innovation in biotech

Laura M. McNamee; Fred D. Ledley

Applying theories of innovation to biotech; an analysis of the evolution of three classes of therapeutic biotechnologies.


Gene Therapy | 2014

Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies

Fred D. Ledley; Laura M. McNamee; V Uzdil; I W Morgan

This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >


Clinical Therapeutics | 2015

Patterns of Innovation in Alzheimer's Disease Drug Development: A Strategic Assessment Based on Technological Maturity.

Jennifer M. Beierlein; Laura M. McNamee; Michael J. Walsh; Fred D. Ledley

4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.


PLOS ONE | 2017

Timelines of translational science: From technology initiation to FDA approval

Laura M. McNamee; Michael J. Walsh; Fred D. Ledley

PURPOSE This article examines the current status of translational science for Alzheimers disease (AD) drug discovery by using an analytical model of technology maturation. Previous studies using this model have demonstrated that nascent scientific insights and inventions generate few successful leads or new products until achieving a requisite level of maturity. This article assessed whether recent failures and successes in AD research follow patterns of innovation observed in other sectors. METHODS The bibliometric-based Technology Innovation Maturation Evaluation model was used to quantify the characteristic S-curve of growth for AD-related technologies, including acetylcholinesterase, N-methyl-d-aspartate (NMDA) receptors, B-amyloid, amyloid precursor protein, presenilin, amyloid precursor protein secretases, apolipoprotein E4, and transactive response DNA binding protein 43 kDa (TDP-43). This model quantifies the accumulation of knowledge as a metric for technological maturity, and it identifies the point of initiation of an exponential growth stage and the point at which growth slows as the technology is established. FINDINGS In contrast to the long-established acetylcholinesterase and NMDA receptor technologies, we found that amyloid-related technologies reached the established point only after 2000, and that the more recent technologies (eg, TDP-43) have not yet approached this point. The first approvals for new molecular entities targeting acetylcholinesterase and the NMDA receptor occurred an average of 22 years after the respective technologies were established, with only memantine (which was phenotypically discovered) entering clinical trials before this point. In contrast, the 6 lead compounds targeting the formation of amyloid plaques that failed in Phase III trials between 2009 and 2014 all entered clinical trials before the respective target technologies were established. IMPLICATIONS This analysis suggests that AD drug discovery has followed a predictable pattern of innovation in which technological maturity is an important determinant of success in development. Quantitative analysis indicates that the lag in emergence of new products, and the much-heralded clinical failures of recent years, should be viewed in the context of the ongoing maturation of AD-related technologies. Although these technologies were not sufficiently mature to generate successful products a decade ago, they may be now. Analytical models of translational science can inform basic and clinical research results as well as strategic development of new therapeutic products.


PLOS ONE | 2013

Translational Science by Public Biotechnology Companies in the IPO“Class of 2000”: The Impact of Technological Maturity

Laura M. McNamee; Fred D. Ledley

While timelines for clinical development have been extensively studied, there is little data on the broader path from initiation of research on novel drug targets, to approval of drugs based on this research. We examined timelines of translational science for 138 drugs and biologicals approved by the FDA from 2010–2014 using an analytical model of technology maturation. Research on targets for 102 products exhibited a characteristic (S-curve) maturation pattern with exponential growth between statistically defined technology initiation and established points. The median initiation was 1974, with a median of 25 years to the established point, 28 years to first clinical trials, and 36 years to FDA approval. No products were approved before the established point, and development timelines were significantly longer when the clinical trials began before this point (11.5 vs 8.5 years, p<0.0005). Technological maturation represents the longest stage of translation, and significantly impacts the efficiency of drug development.


PLOS ONE | 2017

Modeling timelines for translational science in cancer; the impact of technological maturation

Laura M. McNamee; Fred D. Ledley

The biotechnology industry plays a central role in the translation of nascent biomedical science into both products that offer material health benefits and creating capital growth. This study examines the relationship between the maturity of technologies in a characteristic life cycle and value creation by biotechnology companies. We examined the core technology, product development pipelines, and capitalization for a cohort of biotechnology companies that completed an IPO in 2000. Each of these companies was well financed and had core technologies on the leading edge of biological science. We found that companies with the least mature technologies had significantly higher valuations at IPO, but failed to develop products based on these technologies over the ensuing decade, and created less capital growth than companies with more mature technologies at IPO. The observation that this cohort of recently public biotechnology companies was not effective in creating value from nascent science suggests the need for new, evidence-based business strategies for translational science.


Clinical Therapeutics | 2017

Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities

Jennifer M. Beierlein; Laura M. McNamee; Michael J. Walsh; Kenneth I. Kaitin; Joseph A. DiMasi; Fred D. Ledley

This work examines translational science in cancer based on theories of innovation that posit a relationship between the maturation of technologies and their capacity to generate successful products. We examined the growth of technologies associated with 138 anticancer drugs using an analytical model that identifies the point of initiation of exponential growth and the point at which growth slows as the technology becomes established. Approval of targeted and biological products corresponded with technological maturation, with first approval averaging 14 years after the established point and 44 years after initiation of associated technologies. The lag in cancer drug approvals after the increases in cancer funding and dramatic scientific advances of the 1970s thus reflects predictable timelines of technology maturation. Analytical models of technological maturation may be used for technological forecasting to guide more efficient translation of scientific discoveries into cures.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Contribution of NIH funding to new drug approvals 2010–2016

Ekaterina Galkina Cleary; Jennifer M. Beierlein; Navleen Surjit Khanuja; Laura M. McNamee; Fred D. Ledley

PURPOSE This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. METHODS This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. FINDINGS Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). IMPLICATIONS This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives.


Nature Biotechnology | 2013

Making the biotech IPO work

Laura M. McNamee; Fred D. Ledley

Significance This report shows that NIH funding contributed to published research associated with every one of the 210 new drugs approved by the Food and Drug Administration from 2010–2016. Collectively, this research involved >200,000 years of grant funding totaling more than


Molecular therapy. Nucleic acids | 2017

As Technologies for Nucleotide Therapeutics Mature, Products Emerge

Jennifer M. Beierlein; Laura M. McNamee; Fred D. Ledley

100 billion. The analysis shows that >90% of this funding represents basic research related to the biological targets for drug action rather than the drugs themselves. The role of NIH funding thus complements industry research and development, which focuses predominantly on applied research. This work underscores the breath and significance of public investment in the development of new therapeutics and the risk that reduced research funding would slow the pipeline for treating morbid disease. This work examines the contribution of NIH funding to published research associated with 210 new molecular entities (NMEs) approved by the Food and Drug Administration from 2010–2016. We identified >2 million publications in PubMed related to the 210 NMEs (n = 131,092) or their 151 known biological targets (n = 1,966,281). Of these, >600,000 (29%) were associated with NIH-funded projects in RePORTER. This funding included >200,000 fiscal years of NIH project support (1985–2016) and project costs >

Collaboration


Dive into the Laura M. McNamee's collaboration.

Top Co-Authors

Avatar

Fred D. Ledley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. DiMasi

Tufts Center for the Study of Drug Development

View shared research outputs
Top Co-Authors

Avatar

Kenneth I. Kaitin

Tufts Center for the Study of Drug Development

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge