Laura McGregor
University of Strathclyde
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura McGregor.
Environmental Science & Technology | 2012
Laura McGregor; Caroline Gauchotte-Lindsay; Niamh Nic Daeid; Russell Thomas; Robert M. Kalin
Compositional disparity within a set of 23 coal tar samples (obtained from 15 different former manufactured gas plants) was compared and related to differences between historical on-site manufacturing processes. Samples were prepared using accelerated solvent extraction prior to analysis by two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. A suite of statistical techniques, including univariate analysis, hierarchical cluster analysis, two-dimensional cluster analysis, and principal component analysis (PCA), were investigated to determine the optimal method for source identification of coal tars. The results revealed that multivariate statistical analysis (namely, PCA of normalized, preprocessed data) has the greatest potential for environmental forensic source identification of coal tars, including the ability to predict the processes used to create unknown samples.
Journal of Chromatography A | 2011
Laura McGregor; Caroline Gauchotte-Lindsay; Niamh Nic Daeid; Russell Thomas; Paddy Daly; Robert M. Kalin
Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique.
International Journal of Hygiene and Environmental Health | 2014
Wesu Ndilila; Anna Callan; Laura McGregor; Robert M. Kalin; Andrea Hinwood
Copper mining contributes to increased concentrations of metals in the environment, thereby increasing the risk of metals exposure to populations living in and around mining areas. This study investigated environmental and toenail metals concentrations of non-occupational human exposure to metals in 39 copper-mining town residents and 47 non-mining town residents in Zambia. Elevated environmental concentrations were found in samples collected from the mining town residents. Toenail concentrations of cobalt (GM 1.39 mg/kg), copper (GM 132 mg/kg), lead (21.41 mg/kg) selenium (GM 0.38 mg/kg) and zinc (GM 113 mg/kg) were significantly higher in the mining area and these metals have previously been associated with copper mining. Residence in the mining area, drinking water, dust and soil metals concentrations were the most important contributors to toenail metals concentrations. Further work is required to establish the specific pathways of exposure and the health risks of elevated metals concentrations in the copper mining area.
Journal of Chromatography A | 2012
Caroline Gauchotte-Lindsay; Phil Ian Richards; Laura McGregor; R. Thomas; Robert M. Kalin
A dense non-aqueous phase liquid sample formed by release of coal tar into the environment was derivatised by trimethylsilylation using the reagent N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and extracted in hexane using accelerated solvent extraction. This procedure enables comprehensive extraction of an extensive suite of organic compounds from tar, which has not previously been described. Comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS) was used for the analysis of the sample for concurrent evaluation of -OH functional group-containing compounds along with aliphatics, polycyclic aromatic hydrocarbons and other typical tar compounds normally determined via classic gas chromatography. Using statistically designed experiments, a range of conditions were tested for complete recovery of four different surrogates. The robustness and repeatability of the optimised derivatisation/extraction method was demonstrated. Finally, more than a hundred and fifty derivatised compounds were identified using mass spectra elucidation and GC×GC logical order of elution.
Journal of Chromatography A | 2017
Lena Dubois; Katelynn Perrault; Pierre-Hugues Stefanuto; Stefan Koschinski; Matthew Edwards; Laura McGregor; Jean-François Focant
Blood is a matrix with high potential for forensic investigations and human rescue. Its volatile signature can be used in search exercises to locate injured or deceased individuals. Little is known, however, about the volatile organic compound (VOC) profile of blood, except that it is complex and varies while blood ages. In the present study, we used thermal desorption (TD) and comprehensive two-dimensional gas chromatography (GCxGC) coupled to variable-energy electron ionization time-of-flight mass spectrometry (TOFMS) to monitor VOC signatures of human blood. A highly complex reference standard (Century Mix) containing 108 compounds of various chemical functionalities and several homologue series of compounds was used for the purpose of transposing our previously developed cryogenically modulated GCxGC-TOFMS methods into the use of a reverse fill/flush (RFF) flow modulator. The average peak width at half height was 340ms and the average tailing factor was 1.16. Light VOCs (down to C4) were effectively flow modulated and exhibited minimal breakthrough over a large dynamic range spanning four orders of magnitude. Mass spectrometric detection was performed using electron impact ionization (EI) carried out at 70eV and lower energies (12, 14, and 16eV). The use of variable-energy (ve) EI allowed mass spectra to be produced with less fragmentation and an increased presence of structurally significant ions and the molecular ion. This provided additional confidence in peak assignments, especially for closely eluting isomers often observed in the profiling of the headspace of blood. Variable-energy EI TD-GCxGC-TOFMS blood data sets were statistically processed using principal component analyses (PCA) and hierarchical cluster analyses (HCA). These techniques demonstrated that the effect of aging was greater than the inter-individual variation on the blood VOC profile. The combination of retention indices, low and high EI MS spectra served as a strong basis to gain more confidence in analytical identification by excluding identities proposed by mass spectral databases (70eV) for compounds contributing to the separation of blood of different ages.
ChemPlusChem | 2014
Caroline Gauchotte-Lindsay; Laura McGregor; Antoine Assal; Russell Thomas; Robert M. Kalin
Archive | 2017
Lena Dubois; Katelynn Perrault; Pierre-Hugues Stefanuto; Stefan Koschinski; Matthew Edwards; Laura McGregor; Jean-François Focant
Archive | 2017
Lena Dubois; Katelynn Perrault; Pierre-Hugues Stefanuto; Stefan Koschinski; Matthew Edwards; Laura McGregor; Jean-François Focant
Archive | 2017
Lena Dubois; Katelynn Perrault; Pierre-Hugues Stefanuto; Stefan Koschinski; Matthew Edwards; Laura McGregor; Jean-François Focant
Archive | 2016
Lena Dubois; Katelynn Perrault; Pierre-Hugues Stefanuto; Stefan Koschinski; Matthew Edwards; Laura McGregor; Jean-François Focant